© Copyright Statement

All rights reserved. All material in this document is, unless otherwise stated, the property of **FPC International, Inc**. Copyright and other intellectual property laws protect these materials. Reproduction or retransmission of the materials, in whole or in part, in any manner, without the prior written consent of the copyright holder, is a violation of copyright law.

Provo City Field Trial of of FPC-1 Fuel Performance Catalyst

Prepared by UHI Corporation Provo, Utah

September 12, 1995

Table of Contents

	Abstract		ii
I.	Introduction		1
II.	Discussion of Carbo	n Mass Balance	1
III.	Instrumentation		2
IV.	Technical Approach		3
V.	Discussion		3
VI.	Conclusions		6
	Appendix 1	Computer Printouts of Data and Calculations	
	Appendix 2	Raw Data Sheets	
	Appendix 3	Table I - Diesel PFs Table II - Gasoline PFs Table III - Carbon Monoxide Emissions Table IV - Smoke Emissions	
	Appendix 4	Weather Data	
	Appendix 5	Figure 1. Carbon Balance Equations Figure 2. Sample Calculation	
	Appendix 6	Dr. Geoffrey J. Germane's letter to Southwest Research Institu	ıte

Abstract

This paper discusses the results of a field test conducted by Provo City fleet management to determine the economic and environmental benefits from fuel treatment with a unique combustion catalyst called FPC-1. The study conducted on a large fleet of both diesel and gasoline powered vehicles documented the following:

- (1) The addition of FPC-1 to the diesel fleet created a 7.8% reduction in fuel consumption.
- (2) The addition of FPC-1 to the gasoline fleet created an 8.3% reduction in fuel consumption.
- (3) FPC-1 treated fuel combusted more completely. Carbon monoxide emissions were reduced 14.2% on a fleet average basis. CO changes generally took place in the high emissions vehicles, and were more profound in the gasoline engines than the diesel engines.
- (4) Smoke density was reduced 18.4% after FPC-1 fuel treatment.

These results verify substantial operational cost savings and environmental benefit can be derived from FPC-1 use throughout the entire Provo City fleet operation.

The paper also discusses a unique, recognized test method for determining the benefits of FPC-1 in the field. The method is known as the carbon mass balance, which is central to the EPA standardized Federal Test Procedures and Highway Fuel Economy Test. The method uses exhaust gas analysis under steady-state engine operation to determine both fuel consumption and exhaust emissions. A detailed discussion of the carbon mass balance is found in sections II., III., and IV of the report.

I. Introduction

FPC-1 Fuel Performance Catalyst is a burn rate modifier or catalyst, proven to reduce fuel consumption and increase engine horsepower in several recognized, independent laboratory tests, and dozens of independent field trials. The catalyst also has a positive impact upon the products of incomplete combustion (smoke and carbon monoxide).

The intent of the current trial at Provo City is to determine the degree of fuel consumption, and emissions reduction resulting from the addition of the FPC-1 catalyst to the # 2 diesel and gasoline fueling a select fleet of compression and spark-ignition engine powered trucks and police cars. The test methodology for determining fuel consumption is the carbon mass balance (cmb). The cmb method measures the carbon containing products of the combustion process (CO2, CO, HC) found in the exhaust, rather than directly measuring fuel flow into the engine. Also, while conducting the cmb procedure, a Bacharach Smoke Spot method is used to determine smoke density in the exhaust of the diesel powered equipment.

This report summarizes the results of baseline and FPC-1 treated fuel consumption and emissions data, and computes and compares the mass flow rates (engine performance factors or PFs) for the same.

II. Discussion of Carbon Mass Balance Method

The carbon mass balance eliminates virtually all of the variables associated with field testing for fuel consumption changes. The method requires no modifications to fuel lines or engines, and can be conducted in a short period of time at minimal expense.

Instead of measuring fuel flow into the engine (ie., the weight or volume of the fuel), measurements are made of the exhaust gases leaving the engine. More precisely, the carbon containing gases in the exhaust are measured. The method is based upon the Law of Conservation of Matter, which states that atoms can neither be created nor destroyed. Since the engines only source of carbon is the fuel it consumes, the carbon measured in the exhaust must come from the fuel. By measuring the carbon going out of the engine in the form of products of combustion, the amount of carbon entering the engine can be determined.

Carbon Balance Calculation

The carbon leaving the engine is mainly as carbon dioxide (CO2), carbon monoxide (CO), unburned hydrocarbons (HC), and particulate (smoke). By collecting this data while the engine is operating at a given load and speed, the fuel flow rate into the engine can be accurately determined. When engine load and speed, along with other factors influencing fuel consumption are reproduced and/or monitored to make appropriate corrections, the carbon balance can be used to confidently determine changes in fuel consumption that might result from the use of a fuel catalyst, such as FPC-1.

With the carbon balance, engine efficiency is expressed in terms of engine performance factors. To calculate any change in engine performance, separate measurements are made with the engine running on base fuel (untreated) and FPC-1 treated fuel. Any changes are stated as percentage changes from the baseline.

A copy of the carbon balance equations is found on Figure 1 (Appendix 5). A sample calculation for illustration purposes is also attached (see Figure 2, Appendix 5). Additionally, the carbon balance can be used to determine the effect of FPC-1 upon harmful emissions, such as carbon monoxide and smoke.

III. Instrumentation

Precision, state-of-the-art instrumentation is used to measure the concentrations of carbon containing gases in the exhaust stream and other factors related to fuel consumption and engine performance. The instruments and their purposes are listed below:

- 1) A Sun Electric SGA-9000 non-dispersive infrared (NDIR) four gas analyzer measures the volume percent of CO2, CO, and oxygen (O2) in the exhaust, and the parts per million (ppm) of HC.
- 2) EPA I/M Calibration Gases known gases used internally to calibrate the NDIR analyzer.
- 3) A twenty (20) foot sampling train and stainless steel exhaust gas probe inserted into the engine exhaust pipe draws a sample of exhaust gases to the analyzer.
- 4) A Fluke Model 52 hand held digital thermometer and wet/dry thermocouple probe measures exhaust, ambient, and fuel temperature.
- 5) A Dwyer Magnehelic 2000 Series Pressure Gauge and pitot tube measures exhaust air velocity and/or pressure.
- 6) A Monarch Contact/Noncontact digital tachometer and magnetic tape measures engine rpm when dash mounted tachometers are unavailable.
 - 7) A hydrometer and flask determines fuel specific gravity (density).
 - 8) Barometric pressure is acquired from local airport or weather station.
 - 9) A Bacharach Truespot Smokemeter for smoke density determination.

Except for engine speed, fuel density, and ambient readings, all data are collected by simply inserting probes into the exhaust stream while the engine is running at a fixed rpm and load, and

the vehicle is stationary. No modifications or device installations are made to the fuel system, nor are normal equipment work cycles disrupted.

IV. Technical Approach

The following technical approach was observed during both test segments:

- 1) All instruments are calibrated according to accepted protocol.
- 2) A sample of fuel is drawn from the fuel tank on each piece of equipment. Using a hydrometer and wet/dry temperature probe, fuel specific gravity and temperature are recorded.
- 3) Each piece of equipment to be tested is parked, brakes locked, and run out-of-gear at a specific engine speed (RPM) until engine water, oil, and exhaust temperature, and exhaust pressure have stabilized. Engine speed is controlled using either a hand held phototach or the tachometer in the cab, and a Snap-On throttle lock.
- 4) Engine hours (or mileage) are taken from hour meters or odometers installed on the equipment.
- 5) After engine stabilization, the exhaust gas sampling probe is inserted into the exhaust stream. The Autocal button is depressed and after the LED readouts clear, test personnel take multiple readings of carbon dioxide, carbon monoxide, unburned hydrocarbons, and oxygen, along with engine speed, exhaust temperature and pressure. Smoke readings are taken on the diesel engines after exhaust gas testing.
- 6) Periodically, ambient air temperature, atmospheric pressure, and relative humidity are recorded. Temperature readings are taken at the test site. Other ambient readings are acquired from local weather information services.
- 7) All data are recorded until technicians are confident the information is consistent and reproducible.
- 8) After completing the baseline, the test fleet fuel was *treated with FPC-1. All equipment operated as normal for approximately 400 to 500 hours, at which time the above procedure was reproduced without alteration, except FPC-1 fuel treatment in the test fleet.

*The first treatment of FPC-1 will be done by UHI/Provo City personnel after the baseline test. Treatment of additional fuel delivered to the site during the test will be carried out by Provo City.

V. Discussion

The data collected during the tests are summarized on the attached computer printouts (Appendix

1). From these data the volume fraction (VF) of each gas is determined and the average molecular weight (Mwt) of the exhaust gases computed. Next, the engine performance factor (pf) based upon the carbon mass in the exhaust is computed. The pf is finally corrected for intake air temperature and pressure (barometric), and total exhaust mass yielding a corrected engine performance factor (PF). The PFs for the diesel engines are tabulated on Table 1 of Appendix 3, while the PFs for the gasoline powered vehicles are found on Table 2. The carbon monoxide percentages on tabulated on Table 3 of Appendix 3. The smoke spot (smoke density) numbers for the diesel engines are found on Table 4 of Appendix 3.

Statistical Anomalies and Fleet Exclusions

Two diesel units that were baseline tested are not included in this report. Unit #732 was installed with a new engine since the baseline. Unit #733 was under repair, and not available for testing.

The diesel fleet contained only one anomaly. Unit #812 showed an 8.72% increase in fuel consumption. Also, this same unit was the only engine to have an increase in engine smoke. All of the remaining seven units experienced fuel consumption reductions, and either no change or decreases in engine smoking. Unit #812 was the only engine that would not hold constant rpm during the FPC-1 treated fuel test segment. It was necessary to constantly throttle back up after a rpm fall off, making it difficult to collect reliable data. This behavior likely led to the increase in fuel consumption and smoke emissions. Further, Unit #812 is a statistical anomaly. For both reasons, UHI engineers have removed #812 from consideration.

The gasoline fleet contained three anomalies. The Ford Explorer (#379) saw consistent baseline CO2 emissions data, but the CO2 data were erratic during the treated fuel test. These erratic data make it difficult to detect actual changes in a fuel flow rate, and are likely responsible, at least in part, for the abnormally large reduction in fuel consumption observed in this vehicle.

Unit #319 saw a dramatic reduction in exhaust gas velocity (approximately 67%). No other vehicle experienced such a large change. Typically, exhaust gas velocity is only slightly affected by the changes in combustion created by FPC-1 or by changes in the environment. The radical reduction in fuel consumption observed in this engine must be caused by other factors. The result is also a statistical anomaly and therefore, has been removed from consideration.

Unit #331 also experienced a large reduction in fuel consumption, greater than observed in previous laboratory and field tests. There appears to be no explanation for this. The data are fairly consistent. Rpm was reproduced, as were other engine conditions. Although, no explanation can be given here why #331 saw such a large reduction in fuel consumption, UHI recommends this unit be removed from the test sample and not be included in any conclusions about fuel consumption.

A few individual data points have been removed from the calculation of individual PFs based upon statistical reliability and aberrations in the procedure, such as the loose hose clamp

discovered on Unit #342. These exclusions are noted on the raw data sheets found in the Appendix 2.

With the anomalies removed, the diesel fleet averaged a 7.8% reduction in fuel consumption after FPC-1 fuel treatment. Similarly, the gasoline fleet saw an 8.3% reduction in fuel consumption with FPC-1 treated fuel. The results for each unit tested are tabled on Tables 1 and 2 of Appendix 3.

Note: Fuel samples could not be extracted from the fuel tanks of the gasoline fleet, therefore, the fuel consumption change is not corrected for fuel density.

The Effect of Environmental Conditions

The diesel fleet baseline and treated fuel test segments were run under identical environmental conditions, as were the baseline and treated fuel tests on the first four gasoline powered vehicles tested on August 29th. Therefore, engine performance and exhaust emissions were not influenced by the intake air temperature and pressure (barometric).

Ambient conditions changed slightly for the treated test done on the police cars on September 1st. Although barometric pressure was virtually identical, the day was cloudy and cooler. This led to a reduction in exhaust temperature not caused by changes in combustion, since exhaust gas velocity was unaffected. The cooler, cloudy day prevented to heating up of the rubber hose used to conduct the exhaust gases to the test instrument probes. Therefore, there was more heat transfer from the exhaust gases into the hose material, and the surrounding environment, creating lower exhaust gas temperatures.

Because of this environment related temperature change, and because of the nearly identical baseline and treated temperatures observed while testing the four police cars on August 29th, it was felt by UHI that the baseline exhaust temperatures would be closer to the treated temperatures had all things been equaled. For this reason, UHI determined to use the baseline exhaust gas temperatures in the treated fuel test calculations.

The calculations for each individual unit in the test fleet are found in Appendix 1.

The Effect of FPC-1 on Carbon Monoxide and Smoke Emissions

The addition of FPC-1 to both diesel and gasoline fuel had a positive impact upon carbon monoxide (CO) and smoke emissions. Overall, the CO was reduced in the test units having the highest baseline CO levels, especially for the gasoline fleet. This is consistent with other tests conducted by UHI. Engines performing at a level of high efficiency leave little room for improvement from a CO emissions standpoint. The letter found in Appendix 6 is from Dr. Geoffrey J. Germane, Ph.D. Mechanical Engineering, BYU, to Mr. Vernon Markworth, Principal Engineer for Southwest Research Institute, dated August 1992, explains this phenomenon in more

detail. The fact that FPC-1 has a more profound effect upon engines that produce higher emissions levels means the product will aid in keeping vehicles that are trending above the emission standards in line with the designed performance level of the engine.

The CO reduction averaged 14.2% for the entire fleet, with the gasoline fleet averaging a 30%, and the diesel fleet a 6.7% reduction.

Smoke density emissions were reduced in virtually all diesel engines treated with FPC-1. Smoke reductions were slightly greater than those of CO, averaging 18.4%.

Environmental conditions in terms of intake air pressure and temperature were virtually identical for all tests, and well within those of laboratory standards. These conditions would have little or no effect upon the combustion process, and therefore, the levels of emissions.

The weather data for the treated fuel tests are included in Appendix 4. The weather data for the baseline tests was acquired from the Weather Services at the Provo Airport, and are included on the Excel Pro database sheets in Appendix 1.

VI. Conclusions

- (1) The addition of FPC-1 to the diesel fleet created a 7.8% reduction in fuel consumption.
- (2) The addition of FPC-1 to the gasoline fleet created an 8.3% reduction in fuel consumption.
- (3) FPC-1 treated fuel combusted more completely. Carbon monoxide emissions were reduced 14.2% on a fleet average basis. CO changes generally took place in the high emissions vehicles, and were more profound in the gasoline engines than the diesel engines.
- (4) Smoke density was reduced 18.4% after FPC-1 fuel treatment.

APPENDIX 1

Company Name:	Provo City	Location:	Provo, Utah		Date:	6/12/95
Test Portion:	Baseline	Stack Diam.	4	Inches		
Engine Type:	L-10 Cummins	Mile/Hrs	2503			
Equipment Type:	Garbage Truck	ID #:	814		Baro	30.07
Fuel Sp. Gravity(SG	.824	Temp:			Time:	

RPM	Exh Temp	Pv Inch	CO	HC	CO2	02	
2200	435	1.4	0.01	10	2.97	15.9	
2200	438	1.4	0.01	10	3.03	15.7	
2200	442.4	1.4	0.01	10	3.05	15.9	
2200	443	1.4	0.01	10	3.04	15.8	
2200	443.6	1.4	0.01	10	3.05	15.9	
2200	444.6	1.4	0.01	10	3.05	15.8	
2200	447.2	1.4	0.01	10	3.06	15.8	
2200	446.2	1.4	0.01	10	3.07	15.8	
2200.000	442.500	1.400	.010	10.000	3.040	15.825	Mean
0	4.109	.000	.000	.000	.031	.071	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw1	pf1	PF1
1.00E-05	0.0001	.030	.158	29.120	212,610	356,369

Company Name:	Provo City	Location:	Provo, Utah		Test Date:	8/28/95
Test Portion:	Treated	Stack Diam:	4	Inches		
Engine Type:	L-10 Cummins	Mile/Hrs:	2864			
Equipment Type	Garbage Truck	ID #:	814		Baro:	30.05
Fuel Sp. Gravity: SG Corr Factor:	.824 1.000	Temp:			Time:	4:15

RPM	Exh Temp	Pv Inch	C(0)	HC	€02	02	
2200	423	1.4	0.01	8	2.79	15.3	
2200	428.2	1.4	0.01	9	2.78	15.2	
2200	427	1.3	0.02	9	2.82	15.4	
2200	431.6	1.35	0.01	6	2.81	15.4	
2200	434	1.35	0.01	8	2.81	15.5	
2200	434.6	1.35	0.01	8	2.81	15.4	
2200	434.6	1.35	0.02	9	2.85	15.4	
2200	435.8	1.35	0.02	9	2.8	15.4	
2200.000	431.100	1.356	.014	8.250	2.809	15.375	Mean
0	4.568	.032	.005	1.035	.021	.089	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw2	pf2	PF2
8.25E-06	0.0001375	.028	.154	29.065	229,364	388,000

388,000

**% Change PF= 8.88 %

Company Name:	Provo City	Location	Provo, Utah		Date:	6/12/95	
Test Portion:	Baseline	Stack Diam.	4	Inches			
Engine Type:	L-10 Cummins	Mile/Hrs	2599				
Equipment Type:	Garbage Truck	ID #:	812		Baro	30.03	
Fuel Sp. Gravity(SG	821	Temn:					

Fuel Sp. Gravity(SG .821 Temp:

Time:

RPM	Exh Temp	Pv Inch	CO	HC	CO2	02	
2200	397	1	0.02	23	2.16	17.1	
2200	397.2	1	0.02	23	2.17	17.1	
2200	397.4	1	0.02	23	2.2	17.1	
2200	400.6	1	0.02	23	2.15	17.2	
2200	400.2	1	0.02	21	2.15	17.2	
2200	401.2	1	0.02	23	2.15	17.2	
2200	401.2	1	0.02	22	2.15	17.1	
2200	401.4	1	0.02	23	2.17	17.1	
2200.000	399.525	1.000	.020	22.625	2.163	17.138	Mean
0	1.965	.000	.000	.744	.018	.052	Std De

VFHC	VFCO	VFCO2	VFO2	Mtw1	pf1	PF1
2.26E-05	0.0002	.022	.171	29.033	294,892	570,376

Company Name:	Provo City	Location:	Provo, Utah		Test Date:	8/28/95
Test Portion:	Treated	Stack Diam:	4	Inches		
Engine Type:	L-10 Cummins	Mile/Hrs:	2990			
Equipment Type	Garbage Truck	ID #:	812		Baro:	30.08
Fuel Sp. Gravity:	.822	Temp:				
SG Corr Factor:	.999				Time:	

RPM	Exà Temp	Py Inch	6 0	HC	CO2	02	
2200	401.4	1.2	0.02	17	2.26	16.2	
2200	404.2	1.2	0.02	17	2.22	16.2	
2200	412.2	1.1	0.02	15	2.25	16.2	
2200	408.2	1.2	0.02	15	2.25	16.2	
2200	409.4	1.2	0.02	14	2.28	16.4	
2200	411.8	1.1	0.02	14	2.33	16.2	
2200	406.8	1.1	0.02	14	2.14	16.2	
2200	413.4	1.2	0.02	14	2.3	16.1	
2000	397.8	0.9	0.02	12	2.12	16.4	
2177.778	407,244	1.133	.020	14.667	2,239	16.233	Mean
66.6666667	5.263	.100	.000	1.581	.070		Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw2	pf2	PF2
1.47E-05	0.0002	.022	.162	29.008	285,384	521,256

Performance factor adjusted for fuel density:

520,621

**% Change PF = -8.72

Company Name:	Provo City	Location	Provo, Utah		Date:	6/12/95
Test Portion:	Baseline	Stack Diam.	4	Inches		
Engine Type:	L-10 Cummins	Mile/Hrs	3632			
Equipment Type:	Garbage Truck	ID #:	810		Baro	30.09
Fuel Sp. Gravity(SG	.816	Temp:				

RPM	Exh Temp	Pv Inch	€0	HC	CO2	O2	
2200	390	1	0.02	22	2.2	17.1	
2200	395	1	0.02	24	2.19	17	
2200	400	1	0.02	22	2.19	17	
2200	401	1	0.02	23	2.22	17.1	
2200	405	1	0.02	24	2.22	17	
. 2200	406	1	0.02	22	2.22	17	
2200	401	1	0.02	23	2.25	17.1	
2200	400	1	0.02	22	2.23	17	
2200	200 550	1 000	020	22.750	2 217	15.020	2.6
2200	399.750	1.000	.020	22.750	2.215	17.038	Mean
0	5.175	.000	.000	.886	.021	.052	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw1	pf1	PF1
2.28E-05	0.0002	.022	.170	29.037	288,043	557,758

Company Name:	Provo City	Location:	Provo, Utah		Test Date:	8/28/95
Test Portion:	Treated	Stack Diam:	4	Inches		
Engine Type:	L-10 Cummins	Mile/Hrs:				
Equipment Type	Garbage Truck	ID #:	810		Baro:	30.05
Fuel Sp. Gravity: SG Corr Factor:	.825 .989	Temp:			Time:	3:35

RPM	Exh Temp	Pv Inch	CO	FI(e	CO2	O2	
2200	388	0.9	0.02	24	2.15	16.3	
2200	390.2	0.95	0.02	24	2.15	16.3	
2200	392.4	0.9	0.03	24	2.13	16.6	
2200	400.4	0.9	0.02	25	2.09	16.5	
2200	391.4	0.95	0.02	24	2.1	16.6	
2200	398.6	0.95	0.02	24	2.05	16.6	
2200	400	0.95	0.02	24	2.04	16.6	
2200	390.8	0.95	0.02	26	2.04	16.6	
2200.000	393.975	.931	.021	24.375	2.094	16.513	Mean
0	4.901	.026	.004	.744	.047	.136	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw2	pf2	PF2
2.44E-05	0.0002125	.021	.165	28.997	303,703	606,949

Performance factor adjusted for fuel density:

600,255

**% Change PF=

Time:

Company Name:	Provo City	Location:	Provo, Utah		Date:	6/12/95
Test Portion:	Baseline	Stack Diam.	4	Inches		
Engine Type:	CAT 3208T	Mile/Hrs	144204			
Equipment Type:	Dump Truck	ID#:	731		Baro	30.07
Fuel Sp. Gravity(SG	.833	Temp:				

Time:

RPM	Exh Temp	Pv Inch	CO	HC	CO2	02	
1850	273.4	0.8	0.04	21	1.54	18	
1850	274	0.8	0.04	23	1.52	18	
1850	279.4	0.8	0.04	21	1.52	18.1	
1850	280	0.8	0.04	21	1.53	18.1	
1850	282.2	0.8	0.04	22	1.52	18.2	
1850	282.6	0.8	0.04	22	1.52	18.1	
1850	283	0.8	0.04	23	1.54	18.2	Loopers
1850	283	0.8	0.04	23	1.53	18.1	
1850.000	279,700	.800	.040	22,000	1.528	18.100	Mean
0	3.942	.000	.000	.926	.009	.076	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw1	pf1	PF1
2.20E-05	0.0004	.015	.181	28.970	408,744	820,525

Company Name:	Provo City	Location:	Provo, Utah		Test Date:	8/28/95
Test Portion:	Treated	Stack Diam:	4	Inches		
Engine Type:	CAT 3208T	Mile/Hrs:	145493			
Equipment Type	Dump Truck	ID #:	731		Baro:	30.05
Fuel Sp. Gravity: SG Corr Factor:	.824 1.011	Temp:	87		Time:	4

RPM	Exit Temp	By Inch	CO.	HC	CO2	O2	
1850	281.9	0.8	0.04	17	1.51	17.5	
1850	286.8	0.7	0.04	17	1.51	17.5	
1850	292.2	0.75	0.04	17	1.51	17.8	
1850	295.8	0.75	0.03	18	1.54	17.7	
1850	290.4	0.75	0.04	15	1.55	17.7	
1850	299.8	0.75	0.03	17	1.54	17.7	
1850	301	0.75	0.04	21	1.54	17.7	
1850	301.8	0.75	0.03	17	1.53	17.6	
1850.000	293.713	.750	.036	17.375	1.529	17.650	Mean
0	7.176	.027	.005	1.685	.016	.107	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw2	pf2	PF2
1.74E-05	0.0003625	.015	.177	28.952	409,905	857,568

Performance factor adjusted for fuel density:

866,834

**% Change PF= 5.64 %

Company Name:	Provo City	Location	Provo, Utah		Date:	6/12/95
Test Portion:	Baseline	Stack Diam.	4	Inches		
Engine Type:	CAT 3208T	Mile/Hrs	42717			
Equipment Type:	Dump Truck	ID#:	730		Baro	30.05
Fuel Sp. Gravity(SG	.827	Temp:				

RPM	Extr femp	Pv Inch	C (0)	HC	602	0)2	
2200	335	1.4	0.04	38	1.75	17.8	
2200	336	1.5	0.04	38	1.75	17.8	
2200	336.8	1.5	0.04	38	1.75	17.8	
2200	338	1.5	0.04	34	1.75	17.8	
2200	338.2	1.5	0.04	35	1.75	17.7	
2200	339.2	1.5	0.04	35	1.75	17.7	
2200	339.4	1.5	0.04	35	1.75	17.8	
2200	339.8	1.5	0.04	35	1.75	17.7	
2200.000	337,800	1.488	.040	36.000	1.750	17.763	Mean
0	1.724	.035	.000	1.690	.000	.052	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw1	pf1	PF1
3.60E-05	0.0004	.018	.178	28.993	356,842	545,391

Company Name:	Provo City	Location:	Provo, Utah		Test Date:	8/28/95
Test Portion:	Treated	Stack Diam:	4	Inches		
Engine Type:	CAT 3208T	Mile/Hrs:	44648			
Equipment Type	Dump Truck	ID #:	730		Baro:	30.05
Fuel Sp. Gravity: SG Corr Factor:	.825 1.002	Temp:			Time:	

RPM	Exit Temp	Pv Inch	C(6)	HC	002	(9)2	
2200	340.2	1.35	0.04	18	1.73	17.3	
2200	341.6	1.35	0.04	17	1.72	17.3	
2200	343	1.35	0.04	18	1.74	17.3	
2200	344.8	1.35	0.04	18	1.74	17.3	
2200	347.2	1.35	0.04	18	1.75	17.2	
2200	348.8	1.35	0.04	18	1.75	17.1	
2200	348.2	1.35	0.04	19	1.71	17.3	
2200	348.4	1.35	0.04	18	1.71	17.2	
2200.000	345.275	1.350	.040	18.000	1.731	17.250	Mean
0	3.362	.000	.000	.535	.016	.076	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw2	pf2	PF2
1.80E-05	0.0004	.017	.173	28.968	362,597	584,443

585,857

**% Change PF= 7.42

%

Company Name:	Provo City	Location:	Provo, Utah		Date:	6/12/95
Test Portion:	Baseline	Stack Diam.	4	Inches		
Engine Type:	CAT 3208	Mile/Hrs	45895			
Equipment Type:	Dump Truck	ID #:	153		Baro	30.07
Fuel Sp. Gravity(SG	.832	Temp:			Organica Constitution of the Constitution of t	
					Time:	

RPM	Exh Temp	Pv Inch	CO	i(e	CO2	02	
2000	276	0.8	0.06	21	1.4	18.3	
2000	276	0.8	0.06	21	1.42	18.3	
2000	277.8	0.8	0.06	20	1.42	18.3	
2000	278.2	0.8	0.06	19	1.4	18.3	
2000	279.4	0.8	0.06	21	1.41	18.3	
2000	279.6	0.8	0.06	21	1.41	18.3	
2000	280.4	0.8	0.06	22	1.4	18.3	
2000	281	0.8	0.06	22	1.4	18.3	
2000.000	278.550	.800	.060	20.875	1.408	18.300	Mean
0	1.888	.000	.000	.991	.009	.000	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw1	pf1	PF1	
2.09E-05	0.0006	.014	.183	28.958	436,375	875,311	

Company Name:	Provo City	Location:	Provo, Utah		Test Date:	8/28/95
Test Portion:	Treated	Stack Diam:	4	Inches		
Engine Type:	CAT 3208	Mile/Hrs:	46403			
Equipment Type	Dump Truck	ID #:	153		Baro:	30.05
Fuel Sp. Gravity: SG Corr Factor:	.834 .998	Temp:			Time:	

RPM	Exh Temp	Py Inch	60	HC	(602	(9)2	
2000	281	0.75	0.06	20	1.38	17.8	
2000	283.6	0.75	0.06	19	1.38	17.9	
2000	285.6	0.7	0.06	17	1.39	17.7	
2000	285.8	0.7	0.06	17	1.38	17.8	
2000	290.4	0.7	0.06	19	1.4	17.5	
2000	291.6	0.7	0.06	17	1.4	17.8	
2000	292.2	0.7	0.06	17	1.4	17.6	
2000	293.8	0.7	0.06	18	1.4	17.8	
	3						-
2000 000	200 000	712	060	10.000	1 201	15 520	74
2000.000	288.000	.713	.060	18.000	1.391		Mean
0	4.613	.023	.000	1.195	.010	.130	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw2	pf2	PF2
1.80E-05	0.0006	.014	.177	28.933	441,386	943,823

941,554

**% Change PF = 7.57

Company Name:	Provo City	Location	Provo, Utah		Date:	6/12/95
Test Portion:	Baseline	Stack Diam.	4	Inches		
Engine Type:	CAT 3208	Mile/Hrs	65758			
Equipment Type:	Boom Truck	ID #:	33		Baro	30.03
Fuel Sp. Gravity(SG	.830	Temp:				

RPM	Exh Temp	Pv Inch	CO	HC	CO2	02	
2000	374.6	2	0.05	27	2.02	17.3	
2000	380	2	0.05	30	2.01	17.3	
2000	380.2	2	0.05	30	2.01	17.3	
2000	381.6	2	0.05	31	2.01	17.2	
2000	381.4	2	0.05	31	2.02	17.2	
2000	382.6	2	0.05	31	2.01	17.2	
2000	383.2	2	0.05	31	2.01	17.1	
2000	384.2	2	0.05	31	2.02	17.1	
2000.000	380.975	2.000	.050	30.250	2.014	17.213	Mean
0	2.946	.000	.000	1.389	.005	.083	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw1	pf1	PF1
3.03E-05	0.0005	.020	.172	29.012	310,793	420,452

Company Name:	Provo City	Location:	Provo, Utah		Test Date:	8/28/95
Test Portion:	Treated	Stack Diam:	4	Inches		
Engine Type:	CAT 3208	Mile/Hrs:	66783			
Equipment Type	Boom Truck	ID #:	33		Baro:	30.05
Fuel Sp. Gravity: SG Corr Factor:	.826 1.005	Temp:	87		Time:	

RPM	Exh Remp	Pv Inch	CO	HC	602	02	
2000	427	1.9	0.04	14	1.95	16.9	
2000	420.4	1.9	0.04	14	2.11	16.6	
2000	420.4	1.9	0.04	17	1.98	16.9	
2000	419.2	1.9	0.04	17	1.97	16.8	
2000	421.9	1.9	0.04	17	2	16.8	
2000	423.8	1.9	0.04	17	2.12	16.5	
2000	417.2	1.89	0.04	17	1.97	16.9	
2000	410.6	1.89	0.04	17	1.97	16.7	
2000.000	420.063	1.898	.040	16.250	2.009	16.763	Mean
0	4.843	.005	.000	1.389	.067	.151	Std De

VFHC	VFCO	VFCO2	VFO2	Mtw2	pf2	PF2
1.63E-05	0.0004	.020	.168	28.993	314,198	446,563

448,715

**% Change PF = 6.72 %

Company Name:	Provo City	Location	Provo, Utah		Date:	6/12/95
Test Portion:	Baseline	Stack Diam.	4	Inches		
Engine Type:	Int'l 466 DT	Mile/Hrs	5681			
Equipment Type:	Boom Truck	ID #:	18		Baro	30.03
Fuel Sp. Gravity(SG	.826	Temp:			Time:	

RPM	Exh Temp	Pv Inch	CO	HC	CO2	02	
2000	428.2	0.6	0.05	24	3.31	15.3	
2000	428.2	0.8	0.05	24	3.31	15.3	
2000	432.2	0.8	0.05	24	3.3	15.3	
2000	433.4	0.8	0.05	24	3.31	15.3	
2000	433.4	0.8	0.05	24	3.31	15.3	
2000	435.4	0.8	0.05	24	3.3	15.3	
2000	435	0.8	0.05	24	3.3	15.3	
2000	436.2	0.8	0.05	25	3.3	15.3	
2000.000	432.750	.775	.050	24.125	3,305	15.300	Mean
0	3.083	.071	.000	.354	.005	.000	Std De

VFHC	VFCO	VFCO2	VFO2	Mtw1	pf1	PF1
2.41E-05	0.0005	.033	.153	29.142	192,946	432,036

Company Name:	Provo City	Location:	Provo, Utah		Test Date:	8/28/95
Test Portion:	Treated	Stack Diam:	4	Inches		
Engine Type:	Int'l 466 DT	Mile/Hrs:	5843			
Equipment Type	Boom Truck	ID #:	18		Baro:	30.03
Fuel Sp. Gravity: SG Corr Factor:	.825 1.001	Temp:			Time:	

RPM	Exh Temp	Pv Inch	CO.	HC	CO2	O2	
2000	422	0.75	0.04	17	3.06	14.8	
2000	425.6	0.75	0.04	17	3.07	14.8	
2000	429.6	0.7	0.04	17	3.1	15	
2000	431.6	0.7	0.04	17	3.1	14.9	
2000	433.8	0.7	0.04	17	3.1	15	
2000	434.4	0.75	0.04	16	3.07	15	
2000	436.4	0.75	0.04	17	3.07	15	
2000	437.2	0.75	0.04	14	3.09	14.9	
2000.000	431.325	.731	.040	16.500	3.083	14.925	Mean
0	5.327	.026	.000	1.069	.017	.089	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw2	pf2	PF2
1.65E-05	0.0004	.031	.149	29.091	207,202	477,252

477,830

**% Change PF = 10.60

Company Name:	Provo City	Location	Provo, Utah		Date:	6/13/95
Test Portion:	Baseline	Stack Diam.	2.5	Inches		
Engine Type:	5.0 Ford	Mile/Hrs	69620			
Equipment Type:	Police Car	ID #:	320		Baro	29.92
Fuel Sp. Gravity(SG	1.000	Temp:			552500000000000000000000000000000000000	

Time:

RPM	Exh Temp	Pv Inch	CO	HC	CO2	O2	
3900	158.2	0.02	0.03	19		7.2	
	163.2	0.02	0.02	19		7.2	
	169.2	0.02	0.02	19	8.01	7.2	
3850	171.2	0.02	0.03	19	8	7.2	
	174.4	0.02	0.02	18	8	7.2	
	176.8	0.02	0.03	19	7.99	7.2	
3925	179.2	0.02	0.02	19	8	7.2	
	180.2	0.02	0.02	19	7.95	7.2	77.71.70
	182	0.02	0.02	15	7.94	7.2	
3891.667	172.711	.020	.023	18.444	7.984	7.200	Mean
38.18813079	8.060	.000	.005	1.333	.028	.000	Std Dev

 VFHC
 VFCO
 VFCO2
 VFO2
 Mtw1
 pf1
 PF1

 1.84E-05
 0.000233333
 .080
 .072
 29.567
 82,274
 2,466,946

Company Name:	Provo City	Location:	Provo, Utah		Test Date:	8/29/95
Test Portion:	Treated	Stack Diam:	2.5	Inches		
Engine Type:	5.0 Ford	Mile/Hrs:	70785			
Equipment Type	Police Car	ID #:	320		Baro:	30.07
Fuel Sp. Gravity: SG Corr Factor:	1.000 1.000	Temp:			Time:	

RPM	Exh Temp	Pv Inch	CO	HC	CO2	O2	
3860	125.8	0.02	0.01	23	6.96	9	
	126.2	0.02	0.01	19	6.91	9	
3930	126.6	0.02	0.01	25	6.96	8.7	
	127.1	0.02	0.01	21	7.08	8.6	
3965	128.6	0.02	0.01	22	7.14	8.6	
3980	129	0.02	0.01	22	7.12	8.5	
	129	0.02	0.01	18	7.05	8.6	
3980	130.2	0.02	0.01	19	7.14	8.4	
3943.000	127.813	.020	.010	21.125	7.045	8.675	Mean
50.69516742	1.593	.000	.000	2.357	.091	.219	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw2	pf2	PF2
2.11E-05	0.0001	.070	.087	29.475	93,054	2,696,101

Performance factor adjusted for fuel density:

2,696,101

**% Change PF= 9.29 %

Company Name:	Provo City	Location	Provo, Utah		Date:	6/13/95
Test Portion:	Baseline	Stack Diam.	2.5	Inches		
Engine Type:	Ford Explorer	Mile/Hrs	43973			
Equipment Type:	Police Car	ID #:	379		Baro	29.92
Fuel Sp. Gravity(SG	1.000	Temp:			Time:	

RPM CO Exh Temp Pv Inch HC CO2 02 2500 381.8 0.06 0.03 13.64 1.6 2500 388.4 0.06 0.03 13.62 1.7 2500 400.2 0.06 0.03 13.55 2 2500 406.2 0.06 0.03 2 13.51 2500 407.8 0.06 0.03 13.46 2.1 2500 409.6 0.08 0.02 13.4 2.1 2.1 2500 412.6 0.08 0.03 13.37 2500 0.08 415.8 0.03 13.37 2500 419.2 0.08 0.03 13.39 2.1 2500 419.4 0.08 0.03 13.37 2.1 2500.000 406.100 .070 .029 7.500 13.468 1.990 Mean

.003

1.080

.106

.185

Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw1	pf1	PF1
7.50E-06	0.00029	.135	.020	30.235	49,971	937,059

.011

Company Name:	Provo City	Location:	Provo, Utah		Test Date:	8/29/95
Test Portion:	Treated	Stack Diam:	2.5	Inches		
Engine Type:	Ford Explorer	Mile/Hrs:	46269			
Equipment Type	Police Car	ID #;	379		Baro:	30.07
Fuel Sp. Gravity: SG Corr Factor:	1.000 1.000	Temp:			Time:	

RPM	Exh Temp	Pv Inch	CO	HC	CO2	O2	
2500	377	0.06	0.03	4	11.61	4	
2500	380	0.06	0.02	4	11.52	3	
2500	384.6	0.06	0.03	3	12.24	2	
2500	387.8	0.06	0.03	4	12.26	1	
2500	390.8	0.06	0.02	4	11.51	4	
2500	393.2	0.06	0.02	3	11.51	3	
2500	396.2	0.06	0.01	8	12.2	2	
2500	398	0.06	0.01	6	12.22	2	
	×				***************************************		
2500.000	388.450	.060	.021	4,500	11.884	2.625	Mean
0	7.532	.000	.008	1.690	.372		Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw2	pf2	PF2
4.50E-06	0.0002125	.119	.026	30.007	56,232	1,130,113

0

12.643

Company Name:	Provo City	Location	Provo, Utah		Date:	6/13/95
Test Portion:	Baseline	Stack Diam.	2.5	Inches		
Engine Type:	5.0 Ford	Mile/Hrs	63650			
Equipment Type:	Police Car	ID #:	342		Baro	29.92
Fuel Sp. Gravity(SG	1.000	Temp:			Time:	

RPM	Exh Temp	Pv Inch	CO	i(e	CO2	02	
3820	133	0.02	0.01	13	7.44	8.5	
	139.4	0.02	0.01	9	7.44	8.3	
	143.4	0.02	0.01	10	7.38	8.2	
3740	146.4	0.02	0.01	10	7.38	8.2	
	154	0.02	0.01	9	7.39	8.2	
	159.9	0.02	0.01	9	7.41	8.1	
3985	162.6	0.02	0.01	9	7.38	8.2	
	168	0.02	0.01	9	7.39	8.1	
3820	168.4	0.02	0.01	9	7.3	8.1	
3841.250	152.789	.020	.010	9.667	7.390	8.211	Mean
102.9866496	12.861	.000	.000	1.323	.042	.127	Std De

VFHC	VFCO	VFCO2	VFO2	Mtw1	pf1	PF1
9.67E-06	0.0001	.074	.082	29.511	88,920	2,623,919

Company Name:	Provo City	Location:	Provo, Utah		Test Date:	8/29/95
Test Portion:	Treated	Stack Diam:	2.5	Inches		
Engine Type:	5.0 Ford	Mile/Hrs:	64746			
Equipment Type	Police Car	ID #:	342		Baro:	30.07
Fuel Sp. Gravity: SG Corr Factor:	1.000 1.000	Temp:	87		Time:	2

RIPM	Exh Temp	la verice in	(e(e)	1:(6	CO2	02	
568666866666666666666666666666666666666	800000000000000000000000000000000000000	000000000000000000000000000000000000000		***************************************	***************************************	**************************************	***************************************
3866	137.2	0.02	0.01	10			
3871	137.8	0.02	0.01	12			
	137.4	0.02	0.01	12			
	136.6	0.02	0.01	14	6.49	9.9	
3890	135.8	0.02	0.01	10	6.6	9.3	
	135.2	0.02	0.01	10	6.6	9.1	
	135.2	0.02	0.01	12	6.56	9.5	
3900	135.4	0.02	0.01	12	6.58	9.3	
3905	136	0.02	0.01	12	6.56	9.3	
		2					
3886.400	136.289	.020	.010	11.556	6.565	9.400	Mean
17.30028901	.996	.000	.000	1.333	.041	.276	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw2	pf2	PF2
1.16E-05	0.0001	.066	.094	29.427	99,762	2,911,233

2,911,233

Company Name:	Provo City	Location	Provo, Utah		Date:	6/13/95
Test Portion:	Baseline	Stack Diam.	2.5	Inches		
Engine Type:	5.0 Ford	Mile/Hrs	59197			
Equipment Type:	Police Car	ID #:	331		Baro	29.92
Fuel Sp. Gravity(SG	1.000	Temp:			Time:	

RPM	Exh Temp	Pv Inch	CO	HC	CO2	02	
3600	160.8	0.02	0.02	13	7.06	8.9	
	163.8	0.02	0.03	14	7.08	8.9	
	166.2	0.02	0.03	17	7.08	8.8	
3590	167.8	0.02	0.03	14	7.07	8.8	
	168.8	0.02	0.03	10		8.7	
	170.8	0.02	0.04	17	7.08	8.9	
3600	173.6	0.02	0.03	17	7.12	8.8	
	175.6	0.02	0.03	17	7.08	8.7	
3640	177.8	0.02	0.04	14	7.12	8.8	
			4				
3607.500	169.467	.020	.031	14.778	7.086	8.811	Mean
22.17355783	5.557	.000	.006	2.438	.022	.078	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw1	pf1	PF1
1.48E-05	0.000311111	.071	.088	29.487	92,329	2,761,355

Company Name:	Provo City	Location:	Provo, Utah		Test Date:	8/29/95
Test Portion:	Treated	Stack Diam:	2.5	Inches		
Engine Type:	5.0 Ford	Mile/Hrs:	60367			
Equipment Type	Police Car	ID #:	331		Baro:	30.07
Fuel Sp. Gravity:	1.000	Temp:	87		202220000000000000000000000000000000000	
SG Corr Factor;	1.000				Time:	

RPM	Exh Temp	Py Inch	CO	HC	CO2	02	
3620	165.4	0.03	0.01	17	5.72	9.5	
	160.2	0.02	0.01	17	5.72	9.5	
3660	157.8	0.02	0.01	19		9.9	
	153.2	0.02	0.01	19	5.82	9.8	
3680	150.2	0.02	0.01	15	5.8	9.7	
3710	148.8	0.02	0.01	22	5.86	9.6	
	146	0.02	0.01	17	5.77	10	
3655	145.4	0.02	0.01	16	5.77	9.8	
3665.000	153.375	.021	.010	17.750	5.780	9.725	Mean
33.1662479	7.169	.004	.000	2.188	.051	.183	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw2	pf2	PF2
1.78E-05	0.0001	.058	.097	29.315	112,761	3,237,734

3,237,734

**% Change PF= 17.25 %

Company Name:	Provo City	Location	Provo, Utah		Date;	6/13/95	
Test Portion:	Baseline	Stack Diam.	2.5	Inches			
Engine Type:	5. L Ford	Mile/Hrs	58444				
Equipment Type:	Crown Victoria 1991	ID #:	319		Baro	29.92	
Fuel Sp. Gravity(SG	1.000	Temp:					

Time:

RPM	Exh Temp	Pv Inch	CO	i(e	CO2	02	
4500	173.2	0.06	0.01	15	7.17	11.2	
	172.6	0.05	0.01	14	7.17	11.2	
3	172.3	0.06	0.01	15	7.17	11.2	
4400	173	0.06	0.01	15	7.15	11.2	
	173.4	0.06	0.01	15	7.15	11.2	
	173.2	0.06	0.01	14	7.12	11.1	
4400	172.6	0.06	0.01	14	7.16	11.2	
	172.4	0.06	0.01	14	7.23	11.1	
4400	172.4	0.06	0.01	10	7.24	11.1	
4425.000	172.789	.059	.010	14.000	7.173	11.167	Mean
50	.414	.003	.000	1.581	.038	.050	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw1	pf1	PF1
1.40E-05	0.0001	.072	.112	29.595	91,824	1,604,654

Company Name:	Provo City	Location:	Provo, Utah		Test Date:	9/1/95
Test Portion:	Treated	Stack Diam:	2.5	Inches		
Engine Type:	5. L Ford	Mile/Hrs:	61304			
Equipment Type	Crown Victoria 1991	ID #:	319		Baro:	30.04
Fuel Sp. Gravity: SG Corr Factor:	1.000 1.000	Temp:			Time:	

RPM	Exh Temp	Pv Inch	CO	HC	CO2	02	
4450	173.2	0.02	0.01	15	6.36	10.5	
	172.6	0.02	0.01	15	6.34	10.5	
4500	172.3	0.02	0.01	15	6.31	11	
	173	0.02	0.01	12	6.4	10.9	
4530	173.4	0.02	0.01	17	6.42	10.8	
	173.2	0.02	0.01	17	6.42	10.8	
4530	172.6	0.02	0.01	15	6.42	10.9	
	172.4	0.02	0.01	15	6.42	10.8	
	172.4						
Commission of the commission o							
4502.500	172.789	.020	.010	15.125	6.386	10.775	Mean
37.74917218	.414	.000	.000	1.553	.044	.183	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw2	pf2	PF2
1.51E-05	0.0001	.064	.108	29.454	102,603	3,082,871

Performance factor adjusted for fuel density:

3,082,871

**% Change PF=

92.12 %

Company Name: Provo City Location Provo, Utah Date: 6/13/95

Test Portion: Baseline Stack Diam. 2.5 Inches

Engine Type: 5.0 Ford Mile/Hrs 74276

Equipment Type: Police Car ID #: 363 Baro 29.92

Fuel Sp. Gravity(SG 1.000 Temp:

Time:

RPM	Exh Temp	Pv Inch	CO	HC	CO2	O2	
3890	118.4	0.02	0.01	24	7.26	8.6	-
3940	128.6	0.02	0.01	14	7.3	8.4	
	133.8	0.02	0.01	15	7.25	8.4	
	137.8	0.02	0.01	14	7.23	8.3	
3900	142.2	0.02	0.01	15	7.25	8.2	
	147	0.02	0.01	17	7.2	8.2	
	150.4	0.02	0.01	15	7.23	8.1	
3930	154	0.02	0.01	15	7.14	8.2	
3915.000	139.025	.020	.010	16.125	7.233	8.300	Mean
23.80476143	11.894	.000	.000	3.314	.047		Std Dev

VFHC VFO2 **VFCO** VFCO2 Mtw1 pf1 PF1 1.61E-05 0.0001 .083 29.490 .072 90,735 2,647,231

Company Name: Provo City Location: Provo, Utah Test Date: 9/1/95 Test Portion: Stack Diam: Treated 2.5 Inches

Engine Type: 5.0 Ford Mile/Hrs: 74276

363 Equipment Type Police Car ID #: 30.08 Baro:

Fuel Sp. Gravity: 1.000 Temp: SG Corr Factor: 1.000 Time:

RPM	Exh Temp	Py Inch	CO.	HC	CO2	O2	
3820	118.4	0.02	0.01	39	6.71	10.4	
	128.6	0.02	0.01	35	6.71	10.4	
3830	133.8	0.02	0.01	35	6.67	10.6	
	137.8	0.02	0.01	35	6.69	10.5	
3850	142.2	0.02	0.01	32	6.62	10.6	
	147	0.02	0.01	32	6.6	10.5	
3860	150.4	0.02	0.01	33	6.62	10.7	
	154	0.02		28	6.62	10.5	
3840.000	139.025	.020	.010	33.625	6.655	10.525	Mean
18.25741858	11.894	.000	.000	3.204	.045	.104	Std Dev

VFHC VFCO VFCO2 VFO₂ Mtw2 pf2 PF2 .067 .105 29.488 98,411 3.36E-05 0.0001 2,878,860

Performance factor adjusted for fuel density:

2,878,860

**% Change PF=

Company Name:	Provo City	Location	Provo, Utah		Date:	6/13/95
Test Portion:	Baseline	Stack Diam.	2.5	Inches		
Engine Type:	5.0 Ford	Mile/Hrs	74794			
Equipment Type:	Police Car	ID #:	361		Baro	29.92
Fuel Sp. Gravity(SG	1.000	Temp:				

Time:

RPM	Bandtemp	Evalmen	(6(8)	HC	602	02	
3950	153	0.02	0.01	9	7.4	8.4	
	157	0.02	0.01	9	7.36	8.2	
	162.2	0.02	0.01	9	7.4	8.1	
3960	165.1	0.02	0.01	9	7.36	8.2	
	169.4	0.02	0.01	9	7.36	8.2	
	169.9	0.02	0.01	7	7.33	8.3	
3960	175.8	0.02	0.01	9	7.35	8.3	
	178.8	0.02	0.01	9	7.34	8.2	
3960	180.2	0.02	0.01	10	7.35	8.1	
3957.500	167.933	.020	.010	8.889	7.361	8.222	Mean
5	9.486	.000	.000	.782	.024	.097	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw1	pf1	PF1
8.89E-06	0.0001	.074	.082	29.507	89,261	2,666,345

Company Name:	Provo City	Location:	Provo, Utah		Test Date:	9/1/95
Test Portion:	Treated	Stack Diam:	2.5	Inches		
Engine Type:	5.0 Ford	Mile/Hrs:	77248			
Equipment Type	Police Car	ID #:	361		Baro:	30.08
Fuel Sp. Gravity: SG Corr Factor:	1.000 1.000	Temp:			Time:	

RPM	Exh Temp	Pv Inch	CO	HC	CO2	02	
3960	153	0.02	0.01	17	7.12	9.9	
	157	0.02	0.01	15	7.08	9.9	
3900	162.2	0.02	0.01	15	7.32	9.6	
	165.1	0.02	0.01	13	7.33	9.6	
	169.4	0.02	0.01	14	7.25	9.7	
	169.9	0.02	0.01	14	7.32	9.5	
3930	175.8	0.02	0.01	13	7.25	9.5	
	178.8	0.02	0.01	14	7.22	9.5	
	180.2						
3930.000	167.933	.020	.010	14.375	7.236	9.650	Mean
30	9.486	.000	.000	1.302	.094	.169	Std De

VFHC	VFCO	VFCO2	VFO2	Mtw2	pf2	PF2
1.44E-05	0.0001	.072	.097	29.545	90,869	2,721,627

Performance factor adjusted for fuel density:

2,721,627

**% Change PF= 2.07

Company Name:	Provo City	Location	Provo, Utah		Date:	6/13/95	
Test Portion:	Baseline	Stack Diam.	2.5	Inches			
Engine Type:	5.0 Ford	Mile/Hrs	70601				
Equipment Type:	Police Car	ID #:	344		Baro	29.92	
Fuel Sp. Gravity(SG	1.000	Temp:					

Time:

RPM	Dan Temp	Pvilneh	CO	II(e	CO2	0)2	
4100	133.4	0.02	0.01	18	7.09	8.9	
	140	0.02	0.01	15	7.08	8.7	
	147	0.02	0.01	14	6.97	8.6	
4390	156.6	0.02	0.01	12	6.98	8.5	
	160.6	0.02	0.01	10	6.98	8.5	
	165.5	0.02	0.01	10	6.99	8.5	
4450	165.4	0.02	0.01	10	6.98	8.5	
	169	0.02	0.01	10	6.99	8.5	
	171.4	0.02	0.01	10	6.98	8.5	
4313.333	156.544	.020	.010	12.111	7.004	8.578	Mean
187.1719352	13.469	.000	.000	2.934	.046	.139	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw1	pf1	PF1
1.21E-05	0.0001	.070	.086	29.465	93,633	2,771,458

Company Name:	Provo City	Location:	Provo, Utah		Test Date:	9/1/95
Test Portion:	Treated	Stack Diam:	2.5	Inches		
Engine Type:	5.0 Ford	Mile/Hrs:	73772			
Equipment Type	Police Car	ID #:	344		Baro:	30.06
Fuel Sp. Gravity: SG Corr Factor:	1.000 1.000	Temp:			Time:	

RPM	Exh Temp	Pv Inch	CO	HC	CO2	O2	
4320	133.4	0.02	0.01	18	6.7	10.3	
	140	0.02	0.01	15	6.6	10.5	
	147	0.02	0.01	15	6.6	10.5	
4460	156.6	0.02	0.01	10	6.62	10.3	
	160.6	0.02	0.01	10	6.69	10.4	
	165.5	0.02	0.01	10	6.69	10.2	
4160	165.4	0.02	0.01	13	6.71	10.2	
	169	0.02	0.01	12	6.75	10.1	
	171.4						
4313.333	156.544	.020	.010	12.875	6.670	10.313	Mean
150.11107	13.469	.000	.000	2.949	.056	.146	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw2	pf2	PF2
1.29E-05	0.0001	.067	.103	29.480	98,361	2,918,217

Performance factor adjusted for fuel density:

2,918,217

**% Change PF= 5.30

Company Name:	Provo City	Location	Provo, Utah		Date:	6/13/95
Test Portion:	Baseline	Stack Diam.	2.5	Inches		
Engine Type:	5.0 Ford	Mile/Hrs	66653			
Equipment Type:	Police Car	ID #:	322		Baro	29.92
Fuel Sp. Gravity(SG	1.000	Temp:			Tima	

RPM	Exh Temp	Pv Inch	CO	HC	CO2	02	
3980	161	0.02	0.01	10	7.71	8	
	165	0.02	0.01	10	7.73	7.9	
	168.8	0.02	0.01	10	7.67	7.9	
4200	174.4	0.02	0.01	9	7.59	8	
	177	0.02	0.01	9	7.6	7.9	
	181.4	0.02	0.01	8	7.62	7.9	
4170	184.2	0.02	0.01	9	7.62	7.9	
	188	0.02	0.01	9	7.62	7.8	
4165	191.4	0.02	0.01	9	7.56	7.8	
4128.750	176.800	.020	.010	9,222	7.636	7.900	Mean
100.3639211	10.447	.000	.000	.667	.056	.071	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw1	pf1	PF1
9.22E-06	0.0001	.076	.079	29.538	86,148	2,591,442

Company Name:	Provo City	Location:	Provo, Utah		Test Date:	9/1/95
Test Portion:	Treated	Stack Diam:	2.5	Inches		
Engine Type:	5.0 Ford	Mile/Hrs:	68976			
Equipment Type	Police Car	ID #:	322		Baro:	30.06
Fuel Sp. Gravity: SG Corr Factor:	1.000	Temp:			Time:	

RPM	Exh Temp	Pv Inch	CO	F(0	CO2	O2	
3970	161	0.02	0.01	12	6.6	10.5	
	165	0.02	0.01	10	6.68	10.4	
4030	168.8	0.02	0.01	10	6.7	10.2	
	174.4	0.02	0.01	10	6.7	10.2	
4090	177	0.02	0.01	10	6.81	10.3	
	181.4	0.02	0.01	10	6.76	10.2	
4080	184.2	0.02	0.01	9	6.7	10.3	
	188	0.02	0.01	9	6.75	10.1	
	191.4						
4042.500	176.800	.020	.010	10.000	6.713	10.275	Mean
55	10.447	.000	.000	.926	.063	.128	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw2	pf2	PF2
1.00E-05	0.0001	.067	.103	29.486	97,784	2,948,360

2,948,360

**% Change PF= 13.77

APPENDIX 2

		bon Mass						
ompany:	NW Cite Baseline:	Location Tre	on: PNU	Exha	Test I	Oate: Diameter!	Uluqs LInches	
igine Make pe of Equi	/Model:	LT-101	CUMMINT Truck	Miles/Hou	irs) 250	3_ I.D.#	: <u>414</u> (10	233 U
rometric Pi	Gravity: ressure: mperature: _	30,07	Inche				_ (°F)	
RPM	Exhaust Temp %F.	P Inches: of H ₂ O	% CO.	HC ppm	%.C0,	% O ₂	Smoke Number	utet
2700)	435	1.4	.01	10	2.97	15.9	0.	18
	438	1.4	10.	10	3,03	15.7		000
	4424	1:4	.01	10	3.05	15.9		90
	443	1:4	.01	10	3,04	15.8		
	443.6	1,4	.01	10	3,05	15.9		^
	444,6	1.4	.01	10	3.05	15.8		
	447.2	1.4	.01	10	3,06	15.8		
	444,2	1.4	,01	10	3,07	15.8	·•	
				H	End Time_			

Company: Provo C. Au Location:	Provo, NT Test Date: R-Z8-95
Test Portion: Baseline: Treated:	Exhaust Stack Diameter:Inches
1 10 6	27/20
Engine Make/Model:	minsMiles/Hours: 2864 I.D.#: 814
Type of Equipment:	Truck
Fuel Specific Gravity: \$24	(917)
ruel specific Gravity:	@:(°F)
Barometric Pressure:	Inches of Mercury
Intake Air Temperature:	(°F) Start Time: 4.05

RPM.	Exhaust Temp %	P.Inches (of H ₂ O	% CO .	HC ppm	% CO ₂	% O ₂	Smoke Number
2200	423.	1.4	.01	8	279	153	5
	428. 2	14	01	9	278	15.2	
	427	13	02	9	282	154	
Problems of the state of the st	431.6	135	01	lo	28/	15,4	
	434	1.35	01	8	281	155	
	434.6	1.35	-01	8	281	154	
	434.6	135	02	9	285	154	
(-)	435.8	135	02	9	286	154	••
	le.	1			-	ken e	

End Time 4:15

Names of Customer Personnel Participating in Test:

Crair	#	Dave			

Company: Dovo Cu	Ay Location: 1	Drove	Test Date: 6/	11/95-
Test Portion: Baseline:	Treated:	Exhaust S	Stack Diameter:	Inches
Engine Make/Model: Type of Equipment:	LT- Committed touch	72617 Miles/Hours:	425991.D.#:_	812
Fuel Specific Gravity: Barometric Pressure:	20.03	Inches of Mercury	@:	(°F)
Intake Air Temperature:	/	(°F) Start	Time:	

RPM	Exhaust Temp %E	P Inches of H ₂ O	% CO.	HC ppm	%. C 0,	%	Smoke Number 2
2200	397	1.0	.02	.23	2.16	17.1	4.5
	397.2	1.0	,02	23	2.17	17./	
	397.4	1.0	,02	23	2.70	17.1	
	8400,6	1.0	102	23	2.15	17,2	
	400.2	1.0	,02	21	2.15	17,2	
	401.2	(.0	.02	13	2.15	17.2	
	401.2	1.0	.0z	22	2.15	17.1	
	401.4	1,0	,02	23	2,1.7	17.1	٠.

End Time

Water Tempo 180 Or 1 promer 45 ps,

Names of Customer Personnel Participating in Test:

Company: Pravo City Location:	Provo, UT Test Date: 8-28-95
Test Portion: Baseline: Treated	Exhaust Stack Diameter:Inches
Engine Make/Model:	MINS Miles/Hours: 2990 I.D.#: 812
Type of Equipment: Garbage	TNCK
Fuel Specific Gravity:822	(°F)
Barometric Pressure: 30,08	Inches of Mercury
Intake Air Temperature:	(°F) Start Time: 2:35

RPM	Exhaust Temp 2F	P.Inches . .of H.O	% CO .	HC ppm	% CO ₂	% O.	Smoke. Number
ZZOO	401.4 3 88 8	1.2	.02	17	2.26	16.2	5
2200	4042	1.2	:02	17	2.22	16.2	
2260	412.2	1.1	.02	15	225	162	
2200	408.2	1.2	.02	15	225	16.2	· "); • • •
2200	409.4	1.2	.02	14	228	164	
2200	411.8	1:1	02	14	233	162	
ZZ60	406-8	1.1	DZ	14	214	162	
1206	413.4	12	02	14	230	161	•
2000	397.9	r 7	-02	12	2.12	16.4	
							# # * * * * * * * * * * * * * * * * * *

End Time 2155

Names of Customer Personnel Participating in Test:

Craig & Dave Brent

Signature of Technicians:

Company: Frovo Cyty Location:	rovo, VT Test Date: 8-28-95
Test Portion: Baseline: Treated:	Exhaust Stack Diameter:Inches
	38836
Engine Make/Model: <u>L-/D Commi</u>	<u>ns</u> Miles/Hours: <u>3992</u> I.D.#: 810
Type of Equipment: Garbage To	VCIC
Doi	
Fuel Specific Gravity:	@:(°F)
Barometric Pressure: 30,05	Inches of Mercury
Intake Air Temperature:	(°F) Start Time: 3:25

RPM	Exhaust Temp %	THE STATE OF THE S	% CO	HC ppm	%. C O ₂	% O ₂	Smoke Number
2200	386.0	.9	.02	24	2.15	16.3	4
	390. 2	.95	,02	24	2.15	16.3	·
	392.4	.9	.03	24	2.13	166	
	400.4	.9	.02	25	2.09	16.5	**
	39/4	95	,02	24	2.10	166	
	3986	. 95	02	24	205	16.6	
	400	. 95	02	24	204	16.6	
V	390.8	. 95	.02	26	204	166	• • • • • • • • • • • • • • • • • • • •
	3. 3.						·

End Time 3:35

Names of Customer Personnel Participating in Test:

Craig & Dave

Signature of Technicians:

		:		News M					** * ** ****	
Carbon Mass Balance Field Data Form										
Con	Company: Providing Location: Provide Test Date: College Test Portion: Baseline: Treated: Exhaust Stack Diameter: Inches 35443 miles Engine Make/Model: Comming Make/Model: College Treated: Inches Type of Equipment: Calbay Trock To the Company Trock Test Date: College Treated: Inches 35443 miles To the College Treated: Inches Type of Equipment: Calbay Trock To the College Treated: Inches The College Treated: Inches The College Treated: Inches The College Treated: Inches Type of Equipment: Calbay Trock Treated: Inches The College Treated: Inches Type of Equipment: Inch									
Eng Typ	ine Make/ e of Equip	Model:	La Buey	Truc	Affes/Hou	175.3632	I.D.#	1: <u>810 (</u> z	0853	
Fue Bar	l Specific ometric Pr	Gravity: ressure: mperature:	30.09	Inche	es of Mero	@:_			- 20	
	RPM	Exhaust	P Inches	% CO	HC	% C O,	% O₂	Smoke 3	Wat Tr	
		Temp °E	of H ₂ O		ppm			Number 4	0.1	
	400	390	1.0	02	Zz	ZÞO	17:1	.5.5	400	
		395	1,0	02	24	2.19	17.0			
		400	1.0	02	72	2,19	17,0			
		401	1.0	02	23	2,72	17.1	w		
		405	1.0	02	24	7.72	17.0)		
46	3	406	1.0	ひこ	72	2.22	-17.0			
		Alov	1,0	02	23	7.25	17.1			
		400	1.0	12	22	2,23	17.0	٠-		
	\		O ₂ -1							

End Time____

Names of Customer Personnel Participating in Test:

Company: Provo City Location:	Provo,	UT 1	Test Date:_	8-28-9	5
Test Portion: Baseline: Treated:	_ X_ Ex	haust St	ack Diame	ter:Incl	105
Engine Make/Model: Cat 3208 T Type of Equipment: Dump Tru		Hours://	<i>f5493</i> _{I.I}	D.#: <u>73</u>	L
Fuel Specific Gravity: 824	-		@:	(°F)	
Barometric Pressure:	Inches of M	lercury			
Intake Air Temperature:	(°F)	Start T	ime:		

RPM	Exhaust Temp %		% <u>CO</u>	HC ppm a	% C O ₂	% O ₂	Smoke Number
(850	281.9	,8	04	17	15/	175	3
- 1	286-8	. 7	04	17	15/	175	
	292.2	.75	04	17	151	178	4
	295.8	.75	03	18	154	1.77	#
	290.4	. 75	04	15	155	17.7	Alanger Transfer
	299.8	1.75	.03	17	154	177	
	301.0	.75	04	21	154	177	
V	301.8	. 75	03	17	153	176-	.g 873.47
							e V
						1	

End Time_____

Names of Customer Personnel Participating in Test:

Craig & Dave

Signature of Technicians:

Company: Provo C	ty Location:_	Provo	Test Date	e: 6/11/95
Test Portion: Baseline:	X Treated	Exhaus		meter: 4 Inches
Cirl	7 -	(CA')	1114704	I.D.#:_731
Engine Make/Model:	- CHO Commen	Miles/Hour	z. 1910.	I.D.#:
Type of Equipment:	Tet page	Time Ding	Trock	
Fuel Specific Gravity:	.433		@:	(°F)
Barometric Pressure:	30.07	 Inches of Mercu 		(1)
	50.01		•	
Intake Air Temperature:		(°F) Sta	rt Time:	

RPM	Exhaust Temp %	P Inches of H ₂ O	% CO .	HC ppm	%. C 0,	% O ₂	Smoke Number	O- Morn,
1850	273.4	\$. 8	,04	21	1.54	18.0	3.5	Or Non, Tenf Nevy Centu
	274.0	,8	,04	23	1,52	18.0		
	279.4	8	,04	U	1,52	18.1		
	Z80_D	.8	, 4	21	1.53	18.1		
	782.2	18	,04	22	1.52	18.2	-	
	282.6	. 8	,04	22	1,52	18.1		
	283	,8	,04	23	1.5-4	18.2		
	283	. 8	.04	23	1.53	18./	**	Y
		1.						Snole
								S
				E	and Time			- 0

Names of Customer Personnel Participating in Test:

Company: (NU) C Test Portion: Baseline:	Treated:	_ Exhaust Stack Diam	eter:Inche
Engine Make/Model: Type of Equipment:	DMP TOUL	iles/H our s: 417/7	1.D.#: <u>73</u>
Fuel Specific Gravity: Barometric Pressure:	.827 30.05 Inches	@:	(°F)
Intake Air Temperature	(°F)	Start Time: 3	COD

RPM	Exhaust Temp %F	P Inches A	% CO	HC ppm	% C O ₂	% © ₂	Smoke Number 2
200	335	1,4	104	38	1.75	17.8	4.5
	336	15	.04	38	1.75	17-8	
	334.8	1.5	.04	38	1.75	(7,s	/
	336	1.5	.04	34	1.75	1.78	
	338.2	1-5	.04	35	1.75	17.7	
	339,2	1.5	.04	35	1.75	17.7	1
	339.4	. (.5	.04	35	1.75	17.8	
	3 39.8	1.5	. 04	35	1.75	17.7	
			·				

End Time 3110

Names of Customer Personnel Participating in Test: Signature of Technicians:

Company: Frovo C. ty Locatio	n: Prove	D. UT Test Date:	8-28-95
Company: Frovo C. Hy Locatio Test Portion: Baseline: Tres	ated:X_	Éxhaust Stack Diam	eter:Inches
Engine Make/Model:	OS T Mile	es/Hours: <u>44648</u> I	.D.#: <u>730</u>
Type of Equipment: Domp	Truck		
Fuel Specific Gravity:		@:	(°F)
Barometric Pressure:	Inches o	of Mercury	
Intake Air Temperature:	(°F)	Start Time:3	:15

RPM	Exhaust Temp %		% CO .	HC ppm	% C O ₂	% O ₂	*Smoke * Number *
2210	340.2	1.35	.04	18	1.73	17.3	4
	341.6	1.3	,04	17	1-72	(73	
	343	135	04	18	174	173	
	344.8	1.35	.04	18	1.74	173	41 A.
j	347.2	1 35	.04	18	1.75	172	
	348.8	135	04	18	175	17/	
	3482	135	.04	19	171	173	
	3484	1-35	04	18	171	172	••
						-	
						2 to	·

End Time 3:12

Names of Customer Personnel Participating in Test:

Craio & Daix Box

Company:C. Test Portion: Baseline:	Fe_ Location: N	NNW	Test Date:	111/45-
Test Portion: Baseline:	Treated:	Exhaust S	tack Diameter:	Inches
Engine Make/Model:	-1			
Fuel Specific Gravity: Barometric Pressure:	30.07	Inches of Mercury	@:	_ (°F)
Intake Air Temperature:		(°F) Start '	Time:	

RPN	Æ.	Exhaust Temp %F	P Inches of H ₂ O	% CO	HC ppm	%: C 0.	% O ₂	Smoke Number a
20	90	276	. 8	:06	21	140	18.3	2.5
		276	. 8	.00	21	1.42	18.3	
		274.8	. 8	.04	20	1,42	18.3	
		278:2	, &	,00	19	1,40	183	
		279.4	, d	106	21	1.41	18.3	
		279.6	.8	~00	21	1,41	18.3	
		280, 4	.8	.06	22	1:40	18.5	
		281	(8	.06	u	1.40	18.3	
	1							

End Time

Company: Provo City Lo	ocation: <u>Provo</u> , <u>UT</u> Test Date: <u>9-28-95</u> Treated: X Exhaust Stack Diameter:Inches
Test Portion: Baseline:	Treated: Exhaust Stack Diameter:Inches
	3208 Miles/Hours: 4453 I.D.#: 153
Type of Equipment:	no Truck
Fuel Specific Gravity: <u>934</u>	(2) @: 95,2 (°F)
Barometric Pressure:	Inches of Mercury
Intake Air Temperature:	(°F) Start Time: 2.75

RPM.	Exhaust Temp?E	P Inches of H ₂ O	% GO .	HC ppm	% CO ₂	% O.	Smoke Number
2000	281.	.75	,06	20	1,38	18	1.5
2000	2836	75	06	19	1,38	179	
2000	285.6	.7	. Olo	17	1.39	177	
ZOOD	285.8	7	.0lo	17	1,38	178	
2000	290.4	7	.06	19	1.40	175	
2000	291.6	. 7	Olo	17	1.40	178	
ZODU	292.2	.7	.06	17	1.40	176	
Ztot	293.8	7	do	18	140	18	•
		-					
	^	**************************************	,		·		

End Time 2:25

Names of Customer Personnel Participating in Test:

Craig & Dave Brent

		_		111
Company: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Location:	DNVS	Test Date:	0/11/95
Company: Now Cit	Treated	: Ex	haust Stack Diam	eter: <u></u> Inches
Engine Make/Model: Type of Equipment:	/	Miles/I	Iours: 65756 1	I.D.#: <u>33</u>
Fuel Specific Gravity: _ Barometric Pressure:	30.03	_ Inches of M	@: fercury	(°F)
Intake Air Temperature:		(°F)	Start Time:	

RI	PM	Exhaust Temp %	P Inches of H ₂ O	% CO.	HC ppm	%. C 0,	% O,	Smoke Number
2	000	374.6	2.0	.05	27	2,02	17,3	9.0
		380	2.0	105	30	2.01	17.3	
		380,2	2.0	,05	30	2.01	17.3	
		361.6	7,0	05	31	2.01	17:,2	-
		361.4	20	,05	31	2,02	17,2	9
		367.6	2,0	,05	3/	2,0/	17,2	
		363,2	2:0	,05	31	E 01	17.1	
		384.2	2.0	,05	31	7,02	17,1	٠.
	,				E	and Time_		

Names of Customer Personnel Participating in Test:

Company: Test Date: 8-28-9. Test Portion: Baseline: Treated: X Exhaust Stack Diameter: Inches	5
Engine Make/Model: Cat 3208 Miles/Hours: 66783 I.D.#: 33 Type of Equipment: Boom Truck	
Fuel Specific Gravity: @: (°F) Barometric Pressure: Inches of Mercury Intake Air Temperature: (°F) Start Time:	

RPM	Exhaust Temp %F	P Inches I of H ₂ O	% GO.	HC ppm	% CO ₂	% O.	Smoke Number a
2000.	427	19	04	14	195		4
	420.4	19	04	14	2118	166	
	420.4	19	04	17	198	169	
	419.2	19	04	17	THE RESERVE OF THE PERSON NAMED IN	168	
e de la composition della comp	421.9	19	04	17	200	168	
	423.8	1.9	04	17	212 F	165	
	41.7.2	189	04	17	197	169	
V	4106	1.09	04	17	197	167	*• * . * .
							1 *

End Time_

Names of Customer Personnel Participating in Test:

Crain & Daire

Company: Drw City Test Portion: Baseline:	Location:	UU	Test Date	: Ce/11/45
Test Portion: Baseline:		Exhau	ıst Stack Dian	neter: <u>U</u> Inches
Engine Make/Model:		7 3,933 Miles/Hou	7 1rs: 5681	I.D.#: <u>\</u>
Fuel Specific Gravity: Barometric Pressure: 30	.826 .03 Inc	ches of Merc	@:	(°F)
Intake Air Temperature:	(°I		tart Time:	

RPM	Exhaust Temp %	P Inches of H ₂ O	% CO.	HC ppm	%. C O ₂	% O ₂	Smoke Number a	Oi 1 fresens GO
2000	428,2	- 10,6	.05	24	3.31	15.3	4.0	heiser Temp
	428.2	.8	105	24	3.31	15.3		170
	432,2	- 8	.05	24	3.30	IS,3		
	433.4	. 8	.0s	7.Y	3.31	15.3		
	433.4	.8	.05^	24	3,3/	15.3		
	435.4	-8	.05	24	3.30	15:23	R	
	435	.8	, 05	74	5,50	1573		
	434,2	. </td <td>105</td> <td>25</td> <td>7,3</td> <td>15,3</td> <td>·-</td> <td></td>	105	25	7,3	15,3	·-	
								. *
17 y			·					

End Time

Lot of Whit shop

Carbon Mass Balance Field Data Form

Company: Novo established Baseline:	Location:	DNU Ext	Test Date: naust Stack Diam	eter: <u>4</u> Inches
Engine Make/Model: Type of Equipment:				/
Fuel Specific Gravity: Barometric Pressure:	.822 30.05	Inches of Mo	@: ercury	(°F)
Intake Air Temperature:		(°F)	Start Time:	

RPM	Exhaust Temp 21	P Inches of H ₂ 0	% CO.	HC ppm	%.CO,	% O ₂	Smoke Number 2	Water 15/70
2100	478.	3,0	,10	269	2.36	16.7	4.5	011
	480	3,0	. 10	278	2,36	16.7	-	30957
	480.Z	3,0	.10	280	2.34	16.7		Site
	480.2	3,0	.10	2,80	2.36	16.7		Very Dave
	478.4	3.0	.10	7.80	2.37	16.7		Might how
	4826	3.0	.10	265	2.35	16.7	·	Fre! Very Danc Might ham Kigh water Crotert
	482.6	3.0	.10	269	237	16.6		
·	483,2	3.0	,10	273	2,37	16.6	`•	
					¥			

End Time

Names of Customer Personnel Participating in Test:

		Cal	rbon lylass	Balance	rieia i	Jata For	m	* 5 -	
Cor Tes	npany: 4 t Portion:	Baseline:	Location Tre	on: Dv J ated:	Exha	Test I ust Stack I	Date: Diameter:	/11/95 4Inches	
Eng Typ	gine Make oe of Equi	/Model:	DMP 1	wal !	Miles/Ho	rs:14925 _7 Cun	7 I.D.#	733	
Bar	ometric P	Gravity: ressure: emperature: _	30.05	Inche (°F)	es of Mer S			_ (°F)	Worder Teny
	RPM	Exhaust Temp %	San Control of the Co	% CO	HC ppm	%. C O,	% ⊙ ₂ .	Smoke Number	110
	100	480.4	3,0	106	92	2-78	16.1	6.5	30431
		481.4	3.0	.06	92	2,78	16.2	-	
		482	2.8	100	90	2.79	16.1		
		483,4	3.0	, οζ	90	2.80	16.1		
		484.8	30	.06	80	2.78	16,2		
		485,2	3.0	-06	84	279	16,2		
		482,4		.06	84	2.79	16.2		
		484.8	28	105	85	2,78	14.0	٠-	
				·					
	End Time Names of Customer Personnel Participating in Test:								
		names	s of Custome	r rersonn	ei rartici	ipating in	i est:		

Company: Provo C. 4 Location:	Frovo, UT Test Date: 5-28-95
Test Portion: Baseline: Treated	:X Exhaust Stack Diameter:Inches
	2/26
Engine Make/Model: Tn+1 466	DT Miles/Hours: 5843 I.D.#: 18
Type of Equipment: Boom T	CUCK
Fuel Specific Gravity:825	(°F)
Barometric Pressure: 30 0 3	Inches of Mercury
Intake Air Temperature:	(°F) Start Time:

RPM	Exhaust Temp %F	P Inches (of H O	%.CO.	HC ppm	% C O ₂	%:O;	rSmoke Number
2000	422.	\$.75°	04	17	3%	148	ij
Į.	425 6	.75	04	17	367	148	
	429.6	.7	04	17	3/6	156	
- Canada	431.6	.7	04	17	3/0	149	201
	433.8	. 7	04	17	3/0	150	# # T
	434.4	. 75	04	16	307	150	
	436.4	75	04	17	307	150	
	437.2	.75	04	14	309	149	
					5 S. /		15
		4					2

The second		The second second
End	Time	

- Craio & lave		· 10	
	- Craio	A Lave	

Company: 1/500 C174 Location: Test Portion: Baseline: Treate	d: Exhaust Stack Diameter:Inches
Engine Make/Model: Type of Equipment:	Miles/Hours: 46269 I.D.#: 379
Fuel Specific Gravity: 3007 Barometric Pressure:	(°F) Inches of Mercury (°F)
Intake Air Temperature:	_ (°F) Start Time: _ 6 / 5

RPM	Exhaust. Temp :F.	P.Inches A lot H ₂ O	% CO.	HC ppm :	% CO ₂ 4	% O.	Smoke Number
2500	371 153. Z	:06	03	4	1161	4	
	380.	-06	OZ	4	1152	3	
	384.6	,06	03	3	1224	2	
	387.8	.06	03	4	1226	1	a M
and and an analysis of the second	390.8	.06	62	4	1151	4	
	393.2	06	02	3	115/	3	2 m 1 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m
	396-2	.06	01	8	1220	2	
\bigvee	398		01	6	1222	2	1
						2	
		-					2

End Time dint 7 mg

Names of Customer Personnel Participating in Test: The Relation of the Personnel Participating in Test:

Company: Pow City Location	ion: Povo Test Date: 6/12/95	_
Test Portion: Baseline: Tre	eated: Exhaust Stack Diameter:Inch	1e
Engine Make/Model: Ford Expl Type of Equipment: Dolice Co	Miles/Hours: 439 B I.D.#: 375	1
Fuel Specific Gravity:	@:(°F)	
Barometric Pressure:	Inches of Mercury	
Intake Air Temperature:	(°F) Start Time: 1:15 Pm	

RPM.	Exhaust Temp %E	P Inches; of H ₂ 0	% CO .	HC ppm	%. C O ₂	% O ₂	Smoke Number
2500	381.8	.06	.03	9	13.64	1.6	
/	388.4	. 06	103	9	13,62	Į.	
V	400.2	.06	-03	8,	17.55~	2.0	
V	406.2	.06	.03	в	13.51	2.0	
/	407.8	-66	,03	8	13-46	2.1	
/	409.6	108	,02	7	13.40	2./	
	412.6	108	.03	7	13.37	2.1	
/	415.8	-08	.03	6	12.37	2.1	٠-
/	419.2	108	103	6	13.39	2.1	
V	417.4	,08	.03	7	13.37	2./	

End Time 1:30 Pa

Names of Customer Personnel Participating in Test:

A 14

		Test Da	
Engine Make/Model: Type of Equipment:	5.0 FORD CROWN VICE	Miles/Hours: <u>63650</u>	7 I.D.#: 342
Fuel Specific Gravity: _ Barometric Pressure:	,	@: Inches of Mercury	(°F)
Intake Air Temperature:		(°F) Start Time:	

RPM	Exhaust Temp %	P Inches of H ₂ O	% CO	HC ppm	% C O,	%:O ₇	Smoke Number
3820	133.0	,02	01	13	7.44	8.5	
	139.4	,02	.01	9.	744	8.3	
	143.4	.02	.01	10.	738	8.2	
3140	146 -4	.02	.01	10	738	8.2	
	154.6	.02	.01	9	739	8.2	
	1599	,02	.01	9	741	8.1	
3985	162.6	-02	01	9	738	8.2	
	168.0	02	01	9	739	8.1	
3820	168.4	02	0/	9	730	8.1	
					:		

End Time

Company: Frevo C Test Portion: Baseline:	Location: Treated:	Provo Exh	Test Date aust Stack Diar	e: <u> 9-29-</u> 95 meter: <u>I</u> nches	
Engine Make/Model: Type of Equipment:	5.0 Find Palice Car	Miles/Ho	ours: 64746	I.D.#: <u>347</u>	No
Fuel Specific Gravity: _ Barometric Pressure: _ Intake Air Temperature:		Inches of Me (°F)		(°F)	aic. on

RPM.	Exhaust & Temp %F &	P. Inches) of H ₂ O	% CO	HC ppm :	% CO ₂	%:O,	Smoke Number
3866	137.2	.02	,0/	10	436	234	
3871	137.8	02	01	12	438	234	
-	138.4	.02	01	12	625	108	
	136.6	.02	01	14	649	99	
3890	1358	02	01	10	660	9.3	# 12 / 12 / 12 / 12 / 12 / 12 / 12 / 12
	135.2	02	01	10	660	9.1	* * \$1 * 19 * 19 * 10
	135.2	.02	ÖΙ	12	656	95	
3900	135.4	.02	01	12	658	9.3	•
	136	.02	01	12	656	9.3	
3905			,	17			

TILATES CLAMP

End Time

Company: PC-y Test Portion: Baseline:		Test Date:_0 Exhaust Stack Diamet	
Engine Make/Model: 5.0 Type of Equipment:	FORD N ROWN VICTOR	Miles/Hours: <u>59197</u> I.I 21 <i>4</i>	D.#: <u>33/</u>
Fuel Specific Gravity: Barometric Pressure:		@: es of Mercury	(°F)
Intake Air Temperature:	(°F)	•	

RPM	Exhaust Temp %	P Inches: of H ₂ O	% CO.	HC ppm	% CO ₂	% O,	Smoke Number
3600	168.8	.02	.02	13	7.06	8.9	
	163.8	.02	.03	14	7.08	8.9	
	166.2	.02	.03	17	7.08	8.8	
3590	167.8	.02	.03	14	7.07	8.8	
	168.8	.02	103	10	721	8.7	?
3	170.8	.02	.04	17	7.08	8.9	
3600	173.6	.02	.03	17	7.12	8.8	
	175.6	.02	.03	17	7.08	8.7	٠-
3640	177.8	.02	.04	14	7.12	8.8	
			·				

End Time____

Company: 1961/v (
Test Portion: Baseline:_	Treated	: Ex	thaust Stack Diameter	r:Inches
Engine Make/Model: Type of Equipment:			Hours: <u>60 36 7</u> I.D.	.#: <u>331</u>
Fuel Specific Gravity: _ Barometric Pressure:		Inches of M	@: fercury	(°F)
Intake Air Temperature:		(°F)	Start Time:	

RPM.	Exhaust Temp %F	P Inches (of H ₂ O)	% CO.	HC ppm a	% CO ₂	% O.F	Smoke Number
3620	165.4	.03	ÖJ	17	572	95	
秀	160.2	.02	0/	17	572	95	V
3660	157.8	.02	01	19	362	99	1
	153.2	102	01	19	582	98	
3680	150.2	.02	0/	15	580	97.	
3710	148.8	-02	01	22	586	96	
	146.0	.02	01	17	577	100	
3655	145.4	02	61	16	577	98	•
	at a						
							3

End Time____

Company: P City	Location:	Test Date: 6 1	3
Test Portion: Baseline: /	Treated:	Exhaust Stack Diameter: 2.5	Inches
		Miles/Hours: <u>69620</u> I.D.#:	
Fuel Specific Gravity:	Inch		(°F)
Barometric Pressure:		es of Mercury	
Intake Air Temperature:	(°F)	Start Time:	

RPM	Exhaust Temp %	P Inches of H ₂ O	% CO	HC ppm	% C O ₂	% O ₂	Smoke Number
3900	158.2	.02	.03	19	8.26	7.2	1
	163.2	.02	.07	19	8.12	7.2	?
	169.2	. 0 Z	.02	19	8.01	7.2	
3850	171.2	.02	.03	19	8.00	7.2	
	174.4	,02	.02	18	8.00	7.2	
	176.8	.02	.03	19	7.99	72	
3925	179.2	102	,02	19	8.00	7.2	
	180.2	. 02	.02	19	7.95	7.2	
	182.0	.02	.02	1/5?	794	7.2	
				1			

End Time

Carbon Mass Balance Freid Bala Porm
Company: Provo Crty Location: Provo Test Date: 8 29 95 Test Portion: Baseline: Treated: Exhaust Stack Diameter: Inches
Engine Make/Model: 50 FORD Miles/Hours: 70785 I.D.#: 320 Type of Equipment: Police (AL)
Fuel Specific Gravity: @:(°F) Barometric Pressure: Inches of Mercury Intake Air Temperature: (°F) Start Time:
RPM Exhaust P.Inches 70 CO HC 70 CO 75 Smoke

RPM	Exhaust Temp %F	P Inches (of H ₂ O	% CO	HC, ppm a	% CO ₂ 1	% O ₂	Smoke Number
3860	125-8	.02	01	23	696	90	
	126.2	. 02	01	19	691	90	
3930	126.6	.02	01	25	696	8.7	
	177.1	02	01	21	708	86	
3965	128.6	02	61	22	7/4	86	SAFE E
3980	129	.02	01	27	712	85	
	129	.02	0/	18	705	86	
3980	130.2	. 02	0/	19	7,14	84	•
			1		,	*	

No AC

End	Time		
LIIU	I IIIIC		

Names of Custon	mer Personnel	Participating	in Test:
-----------------	---------------	----------------------	----------

* THE

Company:			_ Test Date: <u>6 ° /</u> t Stack Diameter:	
Engine Make/Model: Type of Equipment:	SO GORF CROWN VICTOR	Miles/Hours	: <u>7476</u> I.D.#:	<u>35</u> 363
Fuel Specific Gravity: _ Barometric Pressure: _ Intake Air Temperature:		nches of Mercui °F) Star	@: ry rt Time:	

RPM	Exhaust Temp %	P Inches of H ₂ O	% CO .	HC ppm	% C O;	%:O ₂	«Smoke Number «
3890	118.4	.02	.0[24	7.26	8.6	-
3946	128.6	.02	.01	14	7.30	8.4	
	137.8	.02	.01	15	725	8.4	
	137.8	02	.01	14	723	8.3	
3900	142.2	4.02	01	15	725	8.2	
	147.0	.02	.01	17	720	8.2	
	150.4	.02	101	15	723	8.1	
393 ₀	154.0	,02	01	15	7.14	8.Z	
			·				

End Time____

Company: TROW City Location: Test Portion: Baseline: Treated:	PROVO Test Date: 9-1.95 Exhaust Stack Diameter:Inches
Engine Make/Model: 5-0 Fores Type of Equipment: CROWN U	Miles/Hours: <u>77282</u> I.D.#: <u>363</u>
Fuel Specific Gravity:Barometric Pressure:	(°F) Inches of Mercury
Intake Air Temperature:	(°F) Start Time:

RPM	Exhaust Temp %	P Inches violation	% Ċ O	HC ppm	% CO.	% O.	(Smoke Number
3820	108.4	.02	01	39	671	104	
	108.B	-02	01	35	671	104	
3830	109.2	.02	01	35	667	106	
	1094	02	01	35	66 G	105	
3850	1096	.02	01	32	662	106	4
	1098	.02	61	32	660	105	
3860	110	.02	01	33	662	10.7	
	110.2	-02	00	28	662	105	••
		in k I				a ***	1

r - 1	T:	
Ena	Time	

Company: PGVO CCTY I Test Portion: Baseline:	ocation: <u> Revo</u> Treated: Exh	Test Date:_ laust Stack Diamet	9-1 ter:Inches
Engine Make/Model: 5.0 Type of Equipment: Chi	FORD Miles/HO	ours: <u>7724 \$</u> I.I	D.#: <u>36(</u>
Fuel Specific Gravity:Barometric Pressure:Burtake Air Temperature:	Inches of Me	@: ercury Start Time: 4:7	

RPM	Exhaust Temp %F	P Inches V	% GO.	HC ppm a	% CO ₂	% O ₂	Smoke Number
3960	1094	02	01	17	712	99	
	109.4	02	01	15	708	99	
3900	1098	02	01	15	732	96	
	1102	02	01	13	733	96	
	1106	02	01	14	725	97	
	1108	02	01	14	732	95	
3930	1116	02	0/	13	725	95	
	1120	62	0	14	722	95	14.2 M
	-	2 2 1					

End Time

Company: P C. Ty Test Portion: Baseline:			
Engine Make/Model: 5	OWN VICTORIA	iles/Hours: <u>74794</u> I.D.#:	361
Fuel Specific Gravity:		@:of Mercury	_ (°F)
Intake Air Temperature:	(°F)	Start Time:	

RPM	Exhaust Temp %	P Inches of H ₂ O	% CO.	HC ppm	%.CO ₂	%:O ₇	Smoke Number
3950	153.	.02	.01	9	7.40	8.4	
	157	.02	.01	9	7.36	8. Z	
	162.2	.02	.01	9	7.40	8,1	
3960	165.1	.02	.01	9	7.36	8.2	
	169.4	.02	.01	9	7.36	8,2	
	169.9	,02	.6/	7	7,33	8.3	
3960	175.8	.02	. 01	9	7.35	8.3	
	:78.8	102	.01	9	7.34	8.2	٠.
3960	[80.2	.02	,0/	10	7.35	8.1	

End Time_

Company: PROVO CITY Test Portion: Baseline:	Location: <u>FC</u> Treated:	Test D Exhaust Stack D	eate: <u>9-/.</u> iameter:Inches
Engine Make/Model: 50 Type of Equipment: CR	FORD M	iles/Hours: <u>7377</u>	ZI.D.#: <u>344</u>
Fuel Specific Gravity: Barometric Pressure: ntake Air Temperature:	Inches (°F)	@: of Mercury Start Time:_	(°F)

RPM	Exhaust Temp %	P Inches A	%GO	HC ppm	% CO.	% O ₂	Smoke s Number
4320	106.6	DZ	01	18	676	103	
	105.2	02	01	15	660	105	
	1054	02	01	15	660	105	
4460	107:	02	0/	10	62	<i>B3</i>	
	1074	02	01	10	669	104	Arm
	108	.02	01	10	669	102	
4160	1086	02	01	13	671	10.2	
	109	02	0/	17	675	101	
	•					-	

End	Time	

Company: C(Ty Test Portion: Baseline:			
Engine Make/Model:	O FORD N.	liles/Hours: <u>7060 </u> I 4	.D.#: <u>344</u>
Fuel Specific Gravity: Barometric Pressure:	Inches	@: s of Mercury	(°F)
Intake Air Temperature:	(°F)	Start Time:	

RPM	Exhaust Temp %F.	P Inches (of H ₂ O)	% CO .	HC ppm	%: C O ₂	%:O ₂	Smoke Number
4100	133.4	-02	01	18	7.09	8.9	
-	140.0	.02	.01	15	7.08	8.7	
	147.0	.02	. 01	14	697	8.6	
4390	156.6	.02	.01	12	6.98	8.5	
	160.6	.02	.01	10	698	8.5	
	165.5	.02	01	10	699	8.5	
4450	165.4	.02	-01	10	698	8.5	
	1690	.02	.01	10	699	8.5	٠.
	1714	02	01	10	698	8.5	-

End Time_

Company: Playo UTY Location: Test Portion: Baseline: Treated:	
Engine Make/Model: 50 Ford Type of Equipment: CROWN	Miles/Hours: <u>68976</u> I.D.#: <u>322</u>
Fuel Specific Gravity:	(°F) Inches of Mercury (°F) Start Time:

RPM	Exhaust Temp %F	P.Inches A	% CO.	HC ppm	% CO.	% O ₃	Smoke a Number
3970	(130	02	01	12	660	10.5	
	115	02	01	10	668	104	
4030	1168	32	01	10	670	102	
	1174	02	01	10	670	102	
4090	1184	62	01	10	681	10.3	
	119	'02	61	10	676	102	
4080	1198	02	0/	9	670	10.3	
	120.4	02	0/	9	675	101	•
				-			

End Time

Company: Com	Location: Treated:	Test Date: Exhaust Stack Diame	6-13-95 eter: 25 Inches
Engine Make/Model: Type of Equipment:	5.0 FORD CROWN	Miles/Hours: <u>66653</u> I.	D.#: <u>322</u>
Fuel Specific Gravity: Barometric Pressure: Intake Air Temperature: _		@: nches of Mercury °F) Start Time:	(°F)

RPM	Exhaust Temp %	P Inches:	% CO	HC ppm	% CO 2	% © 2	Smoke Number 2
3980	161.0	.02	.01	10	7.71	8.0	
	165.0	.02	:01	10	7.73	7.9	
4	168.8	.02	.0/	10	7.67	7.9	
42.00	174.4	.02	.01	9	7.59	8.0	
,	177.0	,02	.01	9	7.60	7.9	
	181.4	.02	.01	8	7.62	7.9	
4170	184.2	οZ	.01	.9	?6Z	7.9	
Epidos	188.0	.02	-6/	9	7-62	7.8	٠-
4165	191-4	.02	01	9	756	7.8	

End Time

Company: Provo City Location: Test Portion: Baseline: Treated:	
Engine Make/Model: 5-0 FORD. Type of Equipment: CROWN VIC	Miles/Hours: 6/304I.D.#: 3/9
Fuel Specific Gravity: Barometric Pressure: Intake Air Temperature:	(°F) Inches of Mercury (°F) Start Time:

RPM.	Exhaust Temp E	P Inches (of H ₂ O	% CO.	HC ppm a	% CO ₂	% O.	Smoke Number
4450	117.6	.02	61	15	636	10.5	
	117.6	.02	01	15	634	10.5	
4500	118.6	.02	01	15	631	110	
	117.6	.02	01	12	640	109	
4550	117.2	02	01	17	642	10.8	
	1172	.02	01	17	642	108	
4530	1174	.02	01	15	642	109	
	1176	02	01	15	642	10.8	٠-

End Time

Co	mpany:	PC/14 Baseline:	Locatio					13-95		
		/Model:								
Fu Bai	el Specific cometric P	Gravity:		Inche	es of Mer	@:_		_ (°F)		
	RPM.	Exhaust Temp 2F	P Inches of H ₂ O	% CO.	HC ppm	%.CO;	%: O ₂ :	Smoke Number 2	P4550 510 E	ENGER ELEV
	4500 ON	113.2	-06	-01	15	7.17	11. 1	,	AC O	\checkmark
	AUTEUR		.05							
		172.3	.66	-07	15	7.17	11.2			
-	4400	173.0	.06	101	15	7.15	11.2			
		173.4	.06	. 0/	15	7.15	11.2			
		173.2	.06	-01	14	7.12	11.1			
	4400	172.6	.66	,0/	14	7.16	11.2	,		
		172.4	.06	-01	14	727	11.1			
	4400	172.4	· D6	01	10	7-24	/]./			
					F	End Time				
		Name	s of Custome	er Personn		_	Test:			

APPENDIX 3

TABLE I - DIESEL

UNIT#	ENGINE TYPE	BASE Pf	FPC Pf	<u>%CHG</u>
814	L-10 Cummins	356,369	388,000	8.88
*812	L-10 Cummins	570,376	521,256	-8.72
810	L-10 Cummins	557,758	606,949	7.62
731	CAT 3208T	820,525	857,568	5.64
730	CAT 3208T	545,391	584,443	7.42
153	CAT 3208T	875,311	943,823	7.57
33	CAT 3208T	420,452	446,563	6.72
18	Int'l 466 DT	432,036	477,252	10.60
			AVG.	7 78%

* Could not reproduce rpm, and not included in average NOTE: A positive change in PF equates to a reduction in fuel consumption.

TABLE II - GASOLINE

UNIT#	ENGINE TYPE	BASE Pf	FPC Pf	%CHG
*379	Ford Explorer	937,059	1,130,113	20.60
363	5.0 Ford	2,647,231	2,878,860	8.75
361	5.0 Ford	2,666,345	2,721,627	2.07
344	5.0 Ford	2,771,458	2,918,217	5.30
342	5.0 Ford	2,623,919	2,911,233	10.95
+331	5.0 Ford	2,761,355	3,237,734	17.25
322	5.0 Ford	2,591,442	2,948,360	13.77
320	5.0 Ford	2,466,946	2,696,101	9.29
>319	5.0 Ford	1,604,654	3,082,871	92.12
			AVG:	8.35%

^{*} Inconsistent CO2 Data **

NOTE: A positive change in PF equates to a reduction in fuel consumption.

⁺ Statistical Outlier **

> Radical Drop in Pressure Velocity **

^{**} Not included in average

TABLE III - CARBON MONOXIDE

UNIT#	ENGINE TYPE	BASE CO	FPC CO
814	L-10 Cummins	.010	.014
*812	L-10 Cummins	.020	.020
810	L-10 Cummins	.020	.021
731	CAT 3208T	.040	.036
730	CAT 3208T	.040	.040
153	CAT 3208T	.060	.060
33	CAT 3208T	.050	.040
18	Int'l 466 DT	.050	.040
379	Ford Explorer	.029	.021
342	5.0 Ford	.010	.010
331	5.0 Ford	.031	.010
320	5.0 Ford	.023	.010
363	5.0 Ford	.010	.010
361	5.0 Ford	.010	.010
344	5.0 Ford	.010	.010
322	5.0 Ford	.010	.010
319	5.0 Ford	.010	.010
			%CHG
	AVERAGE	.0255	.0219 -14.2%

^{*} Could not reproduce rpm, and not included in average

TABLE IV - SMOKE SPOT NUMBERS (EXHAUST SMOKE DENSITY)

UNIT#	ENGINE TYPE	BASE SS	FPC SS	%CHG
18	Int'l 466 DT	4.0	4.0	00
33	CAT 3208T	5.0	4.0	-20
731	CAT 3208T	3.5	3.0	-14
814	L-10 Cummins	6.0	5.0	-17
810	L-10 Cummins	5.5	4.0	-27
730	CAT 3208T	4.5	4.0	-11
*812	L-10 Cummins	4.5	5.0	11
153	CAT 3208T	2.5	1.5	-40

AVG: -18.4

^{*} Could not reproduce rpm, and not included in average

APPENDIX 4

************************* Item: 26 Code: CUT 4PM Fri 1 September UTAH this hour TODAY'S DATA TEMP WIND FLSLK VIS HUM BRMTR TOWN WEATHER HTLOW PCPN Wendover no report 91 E 8 91 10 17% 29.98f 91 Lakeside Clover Logan AP Logan 2NW 87 NE 3G11 90 29% 30.03f 90 51 Randolph Garland Perry Brigham City mstly cldy 96 CALM 96 20 17% 30.01f Ogden 92 Hill AFB 91 SW 3 50 22% 30.08s 91 69 Clearfield no report 96 NW 3G7 96 Kaysville 12% 98 60 Farmington mstly cldy 69 S 6 70 10 53% 29.99f 71 42 W Bountiful Bountiful mstly cldy 92 S 18G25 95 25 25% 30.01s 98 68 Salt Lake City Magna Herriman 90 Olympus Cove dry Pt of Mountain 95 S 9G18 99 99 74 24% dry Solitude Alta 10500 ft Alta 9500 ft SnwBrd 11000' SnwBrd 9200' Park City Jupiter Peak ptly cldy 85 SE 11 89 10 32% 30.06r 94 60 Provo Santaquin Dugway Delta Milford rain shwr 70 W 11 70 30 59% 30.24s Cedar City 87 60 30 mstly cldy 78 W 8 80 35% 78 Bryce Canyon 49 7 28% 29.99f no report 90 E 94 10 94 St George AP Zion Ntl Park Clay Basin Flaming Gorge Myton mstly cldy 86 CALM 86 40 24% 30.11f 86 51 Vernal Price Moab La Sal Canyonlands Green River mstly cldy 90 NW 6 92 60 24% 30.10f Hanksville Bullfrog

no report 96 N 5G11 96 17% 30.05f 97 76

Lake Powell Blanding

*****	******	*****	******	******	******
Item: 26 Code:	CUT				
3PM Fri 1 S	eptember	UTAH this ho	our		TODAY'S DATA
TOWN		TEMP WIND	FLSLK VIS	HUM BRMTR	HI LOW PCPN
Wendover		90 E 9	90 10	17% 30.01f	90 63
Lakeside	_				100 TO 10
Clover					
Logan AP					
	_	87 NE 3G11		29% 30.03f	
Logan 2NW	dry		- 0		90 51
Randolph				• • • • • • • • • • • • • • • • • • • •	
Garland				• • • • • • • • • • • • • • • • • • • •	
Perry					
Brigham City					
Ogden	mstly cldy			21% 30.03f	93 69
Hill AFB	mstly cldy			22% 30.08f	91 69
Clearfield					
Kaysville					
Farmington					
W Bountiful	ptly cldy	71 S 10	74 10	48% 30.02f	71 42
Bountiful					
Salt Lake City	mstly cldy	98 SE 9	101 25	20% 30.01f	98 68
Magna					
Herriman					
Olympus Cove	dry	90			90 74
Pt of Mountain	dry	97 SE 2G9	102	24%	99 74
Solitude					
Alta 10500 ft					
Alta 9500 ft					
SnwBrd 11000'					
SnwBrd 9200'					
Park City					
Jupiter Peak					
Provo	no report			26% 30.05f	94 60
Santaquin					
Dugway					
Delta					
Milford					
Cedar City				26% 30.19s	
Bryce Canyon	ptly cldy		78 30		76 49
St George AP	ptly cldy			40% 30.01f	11 - T. 1
Zion Ntl Park					
Clay Basin					
Flaming Gorge					
Myton					
Vernal				24% 30.11f	
Price					
Moab					
La Sal					
Canyonlands					
Green River					
Hanksville				24% 30.10f	58
Bullfrog				24% 30.101	
Lake Powell	no report	97 NF 8G13	98	16% 30.07f	97 76
Blanding					

************************ Item: 26 Code: CUT 2PM Tue 29 August UTAH this hour TODAY'S DATA TOWN WIND FLSLK VIS WEATHER TEMP HUM BRMTR HT LOW PCPN Wendover no report 88 NE 11G20 87 10 11% 30.02f 88 Lakeside Clover -----Logan AP 83 E 13G23 85 30% 30.03s 84 47 Logan 2NW Randolph Garland Perrv Brigham City 86 30 clear 87 SW 10 18% 30.05f Ogden 50 92 Hill AFB ptly cldy 86 NW 16 36% 30.10s 86 Clearfield no report 87 NW 6G15 87 Kaysville 16% 88 Farmington no report 68 E 11G21 69 10 71% 30.08f 68 54 W Bountiful Bountiful ptly cldy 92 NW 13 92 35 16% 30.04s 92 68 Salt Lake City Magna Herriman 85 Olympus Cove Pt of Mountain 89 SE 9G21 91 24% dry 91 73 Solitude Alta 10500 ft Alta 9500 ft. SnwBrd 11000' SnwBrd 9200' Park City Jupiter Peak no report 86 SW 10 90 10 31% 30.07s 87 Provo Santaquin 6G16 94 50 9% 30.04f Dugway 94 W Delta ptly cldy 88 SW 11 89 50 23% Milford 88 S 87 60 18% 30.18f 88 Cedar City clear 21 78 W 11G21 75 30 25% 78 Bryce Canyon clear 43 32G38 105 10 12% 29.94f St George AP no report 100 W 100 Zion Ntl Park Clay Basin Flaming Gorge Myton ptly cldy 85 W 9 84 40 23% 30.07f Vernal Price Moab La Sal Canyonlands Green River Hanksville Bullfrog no report 92 NE 13G14 92 16% 30.10f 92 70 Lake Powell Blanding

**************************** Item: 27 Code: CUT 1PM Tue 29 August UTAH this hour TODAY'S DATA TOWN WEATHER TEMP WIND FLSLK VIS HUM BRMTR HT LOW PCPN Wendover no report 86 NE 7 85 10 11% 30.03f Lakeside Clover Logan AP 83 E 13G23 85 30% 30.03s 84 47 Logan 2NW Randolph Garland Perry Brigham City clear 87 SW 10 86 30 18% 30.05f Ogden Hill AFB ptly cldy 86 NW 16 92 50 86 36% 30.10s Clearfield Kaysville no report 87 NW 6G15 87 16% 88 70 Farmington W Bountiful no report 67 E 11G20 67 10 70% 30.09f 68 54 Bountiful ptly cldy 92 NW 13 92 35 16% 30.04s 92 68 Salt Lake City Magna Herriman Olympus Cove 85 dry Pt of Mountain 89 SE 9G21 91 24% 73 dry 91 Solitude Alta 10500 ft Alta 9500 ft SnwBrd 11000' SnwBrd 9200' Park City Jupiter Peak no report 87 SW 14 91 10 30% 30.07f 87 Provo Santaguin clear 94 W 6G16 94 50 9% 30.04f Dugway Delta ptly cldy 88 SW 11 89 50 23% Milford 60 88 S 87 18% 30.18f Cedar City clear 21 88 75 30 25% clear 78 W 11G21 78 Bryce Canyon 43 14% 29.96f St George AP no report 100 W 13G22 103 10 100 Zion Ntl Park Clay Basin Flaming Gorge Myton ptly cldy 85 W 9 84 40 23% 30.07f Vernal Price Moab La Sal Canyonlands Green River Hanksville Bullfrog no report 92 NE 13G14 92 16% 30.10f 92 70 Lake Powell Blanding

Item: 27 Code:	CUT				
4PM Mon 28 A	uqust	UTAH this ho	our		TODAY'S DATA
TOWN	WEATHER		FLSLK VIS	HUM BRMTR	HI LOW PCPN
Wendover	no report			13% 29.97f	90 62
Lakeside	_				
Clover					
		90 S 17			• • • • • • • • • • • • • • • • • • • •
Logan AP					
Logan 2NW					• • • • • • • • • • • • • • • • • • • •
Randolph					• • • • • • • • • • • • • • • • • • • •
Garland					
Perry					
Brigham City					
Ogden	ptly cldy	92 S 11	92 25	16% 30.00f 27% 30.06f	92 63
Hill AFB	ptly cldy	90 S 11	94 60	27% 30.06f	90 64
Clearfield					
Kaysville					
Farmington					
W Bountiful	no report	77 CALM	87 10	62% 30.01r	80 61
Bountiful					
Salt Lake City	ptly cldy	93 S 16	94 15	18% 30.00f	93 68
Magna					
Herriman					
Olympus Cove	dry	88			88 69
Pt of Mountain	dry	91 SE 8G21	94	25%	92 72
Solitude					
Alta 10500 ft					
Alta 9500 ft					
SnwBrd 11000'					
SnwBrd 9200'					
Park City					
Jupiter Peak					
Provo		88 E 3		20% 30.05f	88 56
Santaquin		THE RESIDENCE OF THE PERSON NAMED IN COLUMN 2 IN COLUM			
Dugway				9% 29.99s	
Delta					
Milford					
Cedar City	clear		86 60		87 61
_	CIEAI				87 81
Bryce Canyon	no monort			13% 29.95f	00 70
St George AP	_				99 72
Zion Ntl Park					• • • • • • • • • • • • • • • • • • • •
Clay Basin					
Flaming Gorge					
Myton					• • • • • • • • • • • • • • • • • • • •
Vernal					• • • • • • • • • • • • • • • • • • • •
Price					
Moab					
La Sal					
Canyonlands					
Green River	ptly cldy	90 S 5	95 50	31%	62
Hanksville					
Bullfrog					
Lake Powell		92 NE 8G15	92	16% 30.07f	92 70
Blanding		y 83 SW 11	88 50	38%	59
**********	******	******	*******	*******	******

******************** Item: 27 Code: CUT UTAH this hour 2PM Mon 28 August TODAY'S DATA TOWN TEMP WIND FLSLK VIS LOW PCPN WEATHER HUM BRMTR HIWendover 90 E 20G26 89 10 no report 13% 29.97f 90 62 Lakeside Clover Logan AP Logan 2NW Randolph Garland Perry Brigham City 11 ptly cldy 92 S 92 25 16% 30.02f Ogden Hill AFB ptly cldy 90 S 16 98 60 35% 30.07s Clearfield Kaysville Farmington no report 80 N 5 89 10 52% 30.00s W Bountiful Bountiful ptly cldy 91 SE 17 91 15 19% 30.02f 93 68 Salt Lake City Magna Herriman Olympus Cove Pt of Mountain 91 SE 9G20 94 25% 92 72 dry Solitude Alta 10500 ft Alta 9500 ft. SnwBrd 11000' SnwBrd 9200' Park City Jupiter Peak 20% 30.05f 88 56 3 88 10 no report 88 E Provo Santaquin mod rain 94 SW 16G30 95 50 9% 30.02s 94 51 0.15 Dugway Delta Milford ptly cldy 86 SW 15 84 40 18% 30.18f Cedar City Bryce Canyon no report 99 W 15G23 102 10 13% 29.95f 99 72 St George AP Zion Ntl Park Clay Basin Flaming Gorge Myton Vernal Price Moab La Sal Canyonlands ptly cldy 90 S 5 95 50 31% Green River Hanksville Bullfrog no report 92 NE 2G9 92 16% 30.08f 92 70 Lake Powell 88 50 38% mstly cldy 83 SW 11 Blanding **************** *************************

Item: 27 Code:						
5PM Mon 28 A	ugust	UTAH this hou	r		TODAY'S DATA	
TOWN	WEATHER	TEMP WIND F	LSLK VIS	HUM BRMTR	HI LOW PCPN	
Wendover	no report	91 SE 18	91 10	13% 29.94f	91 62	
Lakeside						
Clover						
Logan AP		89 S 17				
Logan 2NW				23% 30.00fr	88 44	
Randolph	1				00 11	
Garland						
Perry						
Brigham City						
Ogden				16% 29.98f		
Hill AFB				24% 30.04f		
Clearfield						
Kaysville	no report	88 SW 6G13	88	13%	91 59	
Farmington						
W Bountiful				62% 30.01s		
Bountiful	_					
Salt Lake City	ntly aldy	92 G 16	02 15		02 60	
Magna				19% 29.9/1		
Herriman						
Olympus Cove	dry				88 69	
Pt of Mountain	dry		0.4	9 E &	92 72	
Solitude				20%	/-	
Alta 10500 ft						
Alta 9500 ft						
SnwBrd 11000'						
SnwBrd 9200'						
Park City						
Jupiter Peak						
Provo	no report			21% 30.02f	89 56	
	_					
Santaquin	clear					
Dugway Delta			84 50	9% 29.98f 32%	95 51 0.15	
Milford						
Cedar City				17% 30.14f		
_		88 SW 16G24			88 61	
Bryce Canyon				120, 20, 225		
St George AP	_			13% 29.93f		
Zion Ntl Park						
Clay Basin				• • • • • • • • • • • • • • • • • • • •		
Flaming Gorge				• • • • • • • • • • • • • • • • • • • •		
Myton		00 0 0		20% 20 045		
Vernal	ptly cldy			29% 30.04fr		
Price						
Moab						
La Sal				• • • • • • • • • • • • • •		
Canyonlands				210		
Green River	ptly cldy		95 50		62	
Hanksville					• • • • • • • • • • • • • •	
Bullfrog		00 N 0015				
Lake Powell	_			15% 30.05s	94 70	
Blanding			88 50		59	
*********	*****	**********	******	*********	******	

APPENDIX 5

Figure 1 CARBON MASS BALANCE FORMULAE

ASSUMPTIONS: $C_{12}H_{26}$ and SG = 0.82

Time is constant Load is constant

DATA: Mwt = Molecular Weight

pf1 = Calculated Performance Factor (Baseline) pf2 = Calculated Performance Factor (Treated)

PF1 = Performance Factor (adjusted for Baseline exhaust mass) PF2 = Performance Factor (adjusted for Treated exhaust mass)

CFM = Volumetric Flow Rate of the Exhaust

SG = Specific Gravity of the Fuel

VF = Volume Fraction

d = Exhaust stack diameter in inches Pv = Velocity pressure in inches of H₂0

 P_B = Barometric pressure in inches of mercury

Te = Exhaust temperature ${}^{0}F$

VFHC = "reading" \div 1,000,000

VFCO = "reading" ÷ 100 VFCO₂ = "reading" ÷ 100 VFO₂ = "reading" ÷ 100

 VFO_2 = "reading" \div 100

EQUATIONS:

Mwt =

(VFHC)(86)+(VFCO)(28)+(VFCO₂)(44)+(VFO₂)(32)+[(1-VFHC-VFCO₂-VFO₂)(28)]

pf1 or pf2 = $\frac{3099.6 \text{ x Mwt}}{86(\text{VFHC}) + 13.89(\text{VFCO}_2)}$

CFM = $\frac{(d/2)^2 \pi}{144} \left(1096.2 \sqrt{\frac{P_V}{1.325(PB|ET+460)}} \right)$

 $PF1 \text{ or } PF2 = \underbrace{pf x (Te+460)}_{CFM}$

FUEL ECONOMY:
PERCENT INCREASE (OR DECREASE)

PF2 - PF1 x 100

Figure 2.

SAMPLE CALCULATION FOR THE CARBON MASS BALANCE

BASELINE:

Equation 1 (Volume Fractions)

VFHC = 13.20/1,000,000= 0.0000132VFCO = 0.017/100= 0.00017VFCO₂ = 1.937/100= 0.01937VFO₂ = 17.10/100= 0.171

Equation 2 (Molecular Weight)

Mwt1 =
$$(0.0000132)(86) + (0.00017)(28) + (0.01937)(44) + (0.171)(32) + [(1-0.0000132-0.00017-0.01937-0.171)(28)]$$

Mwt1 = 28.995

Equation 3 (Calculated Performance Factor)

pf1 =
$$\frac{3099.6 \times 28.995}{86(0.0000132) + 13.89(0.00017) + 13.89(0.01937)}$$

pf1 = 329,809

Equation 4 (CFM Calculations)

CFM =
$$\frac{(d/2)^2 \pi}{144} \left(1096.2 \sqrt{\frac{Pv}{1.325(PB|ET+460)}} \right)$$

d =Exhaust stack diameter in inches

Pv = Velocity pressure in inches of H_20

P_B =Barometric pressure in inches of mercury

Te = Exhaust temperature ${}^{0}F$

CFM =
$$\frac{(10/2)^2 \pi}{144} \left(1096.2 \sqrt{\frac{.80}{1.325(30.00/313.100 + 460)}} \right)$$

CFM = 2358.37

Equation 5 (Corrected Performance Factor)

PF1 =
$$\frac{329,809(313.1 \text{ deg F} + 460)}{2358.37 \text{ CFM}}$$

PF1 = 108,115

TREATED:

Equation 1 (Volume Fractions)

VFCO =
$$.013/100$$

= 0.00013

$$VFCO_2 = 1.826/100$$

= 0.01826

$$VFO_2 = 17.17/100 = 0.1717$$

Equation 2 (Molecular Weight)

Mwt2 =
$$(0.0000146)(86) + (0.00013)(28) + (0.01826)(44) + (0.1717)(32)$$

+ $[(1-0.0000146-0.00013-0.01826-0.1717)(28)]$

$$Mwt2 = 28.980$$

Equation 3 (Calculated Performance Factor)

pf2 =
$$3099.6 \times 28.980$$

86(0.0000146)+13.89(0.00013)+13.89(0.01826)
pf2 = 349,927

Equation 4 (CFM Calculations)

CFM =
$$\frac{(d/2)^2 \pi}{144} \left(1096.2 \sqrt{\frac{P_V}{1.325(PB|ET+460)}} \right)$$

d = Exhaust stack diameter in inches

Pv = Velocity pressure in inches of H_20

P_B =Barometric pressure in inches of mercury

Te =Exhaust temperature ^oF

CFM =
$$\frac{(10/2)^2 \pi}{144} \left(1096.2 \sqrt{\frac{.775}{1.325(29.86/309.02 + 460)}} \right)$$

CFM = 2320.51

Equation 5 (Corrected Performance Factor)

PF2 =
$$349.927(309.02 \text{ deg F} + 460)$$

2320.51 CFM

= 115,966

Fuel Specific Gravity Correction Factor

Baseline Fuel Specific Gravity - Treated Fuel Specific Gravity/Baseline Fuel Specific Gravity +1

$$.840 - .837 / .840 + 1 = 1.0036$$

$$PF2 = 115,966 \times 1.0036$$

$$PF2 = 116,384$$

Equation 6 (Percent Change in Engine Performance Factor:)

% Change PF =
$$\frac{PF2 - PF1}{PF1} \times 100$$

Note: A positive change in PF equates to a reduction in fuel consumption.

.. ·: ...

APPENDIX 6